Library Catalogue

My Cart

Your criminal FICO score / by Michelle Tonelli.

This page has been archived on the Web

Information identified as archived is provided for reference, research or recordkeeping purposes. It is not subject to the Government of Canada Web Standards and has not been altered or updated since it was archived. Please contact us to request a format other than those available.

Location

Canadian Policing Research

Resource

e-Books

Authors

Publishers

Bibliography

Includes bibliographical references.

Description

1 online resource ( xiv, 63 pages)

Note

M.A. Naval Postgraduate School 2016.

Summary

One of the more contentious uses of big data analytics in homeland security is predictive policing, which harnesses big data to allocate police resources, decrease crime, and increase public safety. While predictive analytics has long been in use to forecast human behavior, the framework has not proved to be a flawless undertaking. In an effort to improve outcomes of predictive policing, this thesis assesses two high-profile programs—the nation's most popular credit-scoring system and a federal flight-risk program—to determine the greatest pitfalls inherent to programs using predictive analytics. The programs are assessed using what is commonly known in big data as the four Vs—volume, velocity, variety, veracity—but with an added component of the author's creation: verification. Through this framework, it became apparent that the hardest Vs for any predictive policing program to fulfill are veracity and verification. As the field of predictive policing expands, programs face the challenge of ensuring that data used for analysis is accurate and remains accurate, and that the metrics used to verify risk assessments are sound.

Subject

Online Access

Date modified: