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Spatial Analyses
of Crime

by Luc Anselin, Jacqueline Cohen, David Cook,
Wilpen Gorr, and George Tita

The new century brings with it growing interest in crime places.This

interest spans theory from the perspective of understanding the etiol-

ogy of crime, and practice from the perspective of developing effec-

tive criminal justice interventions to reduce crime. We do not attempt

a comprehensive treatment of the substantial body of theoretical and

empirical research on place and crime but focus instead on method-

ological issues in spatial statistical analyses of crime data. Special

attention is given to some practical and accessible methods of

exploratory data analysis that arguably should be the starting place of

any empirical analyses of the relationship of place to crime. Many of

the capabilities to support computerized mapping and spatial statisti-

cal analyses emerged only recently during the 1990s. The promise of

using spatial data and analyses for crime control still remains to be

demonstrated and depends on the nature of the relationship between

crime and place. If spatial features serve as actuating factors for
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crime, either because of the people who or facilities that are located there,

then interventions designed to alter those persons and activities might well

affect crime. Alternatively, if the spatial distribution of crime is essentially

random, then targeting specific places is not likely to be an effective crime

control strategy. Sorting out the place/crime relationship requires analytical

methods that are best suited to isolating the impacts of place on crime.
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A s we near the end of the 20th century, interest in crime placescontinues to
grow. The identification of crime hot spots (Sherman, Gartin, and Buerger

1989) was perhaps a watershed in refocusing attention on spatial/locational fea-
tures of crime. This interest spans theory from the perspective of understanding
the etiology of crime, and practice from the perspective of developing effective
criminal justice interventions to reduce crime. Theoretical concerns focus on how
place might be a factor in crime, either by influencing or shaping the types and
levels of criminal behavior by the people who frequent an area, or by attracting to
an area people who already share similar criminal inclinations. These theoretical
concerns, which are ably addressed in a growing published literature on the crim-
inology of place, are only briefly discussed in this paper.1 We focus instead on the
analytical methods best suited to isolating the impact of place on crime.

Technological advances, primarily in computer capabilities, are fundamental to
recent analytical advances in the methods available for analyzing place-based
crime data. The advent of computer mapping applications and accompanying
geographic information systems (GIS) are crucial to being able to measure and
represent the spatial relationships in data. Perhaps the most powerful analytical
tools emerging from GIS technologies are (1) flexible spatial aggregation capa-
bilities to facilitate the measurement of place-based crime and (2) simple conti-
guity matrices for representing neighbor relationships between different areal
units. In addition to these analytical advances, computerized police records
management systems and computer aided dispatch (CAD) systems of citizen
calls to police make it possible to systematically quantify varying levels of
criminal activity at different places within a city.

The paper that follows begins with a brief overview of some conceptual links
between place and crime. We do not attempt a comprehensive treatment of the
substantial body of theoretical and empirical research on this topic. Our intent
is merely to provide an illustrative context for the main focus of the paper—
spatial statistical analyses of crime data with special emphasis on pragmatic
concerns about how these analyses are best implemented. The text guides
readers through a variety of methodological concerns relating to the analysis of
spatial data and space/time data. Perhaps the most valuable service is to direct
analysts to relevant parts of a growing research literature, with many sources
published only recently. Thorny issues are raised, not to warn analysts off alto-
gether, but rather to encourage the exercise of due caution in the conduct and
interpretation of empirical analyses. Special attention is given to some practical
and accessible methods of exploratory data analysis that arguably should be the
starting place of any empirical analyses of the relationship of place to crime.
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Crime and Place
In this section, we briefly review some theoretical
and empirical developments in research on crime 
and place. These trace back to the work of the early
social ecologists in France during the middle of the
19th century, through the sociological tradition
emerging from the Chicago School in the early 20th
century, and finally to the recent revival of this tradi-
tion in contemporary ecological studies of crime. The
social ecology perspective evolved into more specifi-
cally focused, place-based theories of crime, particu-
larly the routine activities theory. Routine activities
that bring together potential offenders and criminal
opportunities are especially effective in explaining
the role of place in encouraging or inhibiting crime.
The resulting crime locales often take the form of
facilities—places that people frequent for a specific
purpose—that are attractive to offenders or conducive
to offending. Facilities might provide an abundance of
criminal opportunities (e.g., either a target-rich envi-
ronment for thefts or abandoned or otherwise unguard-
ed properties that could be used for illicit activities
like drug dealing). Or they might be the sites of licit
behaviors that are associated with increased risk of
crime (e.g., heavy alcohol consumption in crowds

where disputes can easily turn violent). The relationship between specific types
of facilities and observed crime hot spots is an important question, and these
chronic crime places are particularly well suited for further empirical investiga-
tions of the distinctive criminogenic features associated with place.

Social ecology theories of crime

Early social ecologists
Invariably, research articles that focus on the concentration of crime in distinct
types of communities cite the work of the early French social ecologists Guerry
([1833a] 1984, [1833b] 1974) and Quetelet (1833, 1842).2 As in Durkheim’s
classic studies of suicide ([1897] 1966) and crime ([1901] 1950) a half-century
later, Guerry and Quetelet were interested in explaining differences in commu-
nity crime levels in terms of the varying social conditions of the resident popu-
lations. It is humbling to see the level of analytical sophistication displayed in
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their early maps of population-based rates of crime, suicide, alcoholism, popu-
lation age structure, family structure, educational levels, and population diversi-
ty in 19th-century French “Departments” (i.e., geopolitical areas analogous to
contemporary States or provinces). These historical works are among the earli-
est examples of a type of empirical social research that falls within the tradition
of ecological studies of crime—that is, studies in which the units of analysis
are spatially defined population aggregates.

The next flourishing of ecological research on crime was in the early 20th cen-
tury. More than any other academic body of work, the Chicago School of the
early 1920s is responsible for the emergence of ecological studies in sociologi-
cal research (for example, Park, Burgess, and McKenzie 1925). The Chicago
School represents a sociological paradigm that encourages a synthesis of
qualitative and quantitative methods. While many view it as atheoretical and
primarily empirical, it is difficult to deny its importance in theoretical develop-
ments in community studies and criminology.3 As Abbott (1997, 1152) writes:

[T]he Chicago School thought—and thinks—that one cannot understand
social life without understanding the arrangements of particular social
actors in particular social times and places. . . . [N]o social fact makes any
sense abstracted from its context in social (and often geographic) space
and social time. Social facts are located facts.(emphasis in original)

The original data of the Chicago School were records obtained from the Cook
County (Illinois) Juvenile Court, Boys’ Court and Jail. They included basic
demographic measures like age and sex of each
offender, along with the offender’s home address. The
following passage from Bursik and Grasmick (1993,
31) describes the procedure used by Shaw and col-
leagues to map these data:

The residential address of each individual . . . was
plotted (by hand!) on a base map of the city of
Chicago (see Shaw et al. 1929:24) [sic] for a full
description of the process) and then copied into
outline maps of Chicago by means of a reflector
and glass-top table. . . . The rates of delinquency
(defined in terms of the number of boys referred
to juvenile court) were then computed on the basis
of census tracts, the official local community areas
of Chicago, and one-square-mile areas of the city,
which was their most common operational defini-
tion of the neighborhood.
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Relying only on “visual inspection . . . and rudimentary statistical tests”
(Bursik and Grasmick 1993) of the resulting spatial distribution of offenders,
Shaw and McKay (1942)4 emerged with their seminal findings regarding the
stability of delinquency over time within certain neighborhoods and the nega-
tive relationship between crime and distance from the central business districts.
The social disorganization theory of crime was born from these observations.

Other important work on crime and place emerging from the original Chicago
School includes Thrasher’s (1927) census of urban street gangs. Mapping the
locations where gangs formed, Thrasher found “gangland” in the “interstitial”
areas of Chicago, and not in areas that could easily be labeled as “commercial”
or “residential.” Gangs form where “better residential districts recede before the
encroachment of business and industry” (p. 23). Understandably, Thrasher did
not undertake what was then a formidable task of cataloging all of the fea-
tures that distinguish “gangland” from nongang areas. With the advent of com-
puters, and perhaps more importantly, the accessibility of computerized census
data, this task is much more easily managed today.

The “new” Chicago School
A featured plenary session at the 1996 annual meeting of the American Society
of Criminology held in Chicago addressed the question, “Whither the Chicago
School?” As an esteemed panel of former Chicago School students and mentors
discussed the past, present, and future of Chicago-style ecological studies, it
became clear that we are currently in the midst of a Chicago School revival.5

Over the past two decades, a number of excellent studies have resurrected and
advanced the methodological and theoretical traditions of the original Chicago
School.6 Though not causally related, recent developments of widely accessible
computerized mapping and spatial analysis techniques have accompanied the
resurgence in popularity of ecological explanations of crime. The new GIS
capabilities that permit flexible measurements at various levels of spatial aggre-
gation have facilitated many recent analyses of ecological features of crime.

For instance, relying on their ability to map the location of homicides, aggre-
gate these point locations to census tracts, and then examine the distribution of
gang homicides controlling for “social disorganization,” Curry and Spergel
(1988) find crime to be correlated with poverty and a lack of social control, but
violence (e.g., homicide) to be correlated with their measure of social disorgan-
ization. Tita, Engberg, and Cohen (1999) provide another contemporary ecolog-
ical study of gangs. They find that the areas where gangs form are low on a
variety of measures of informal social control and share features associated
with the “underclass.” Furthermore, once racial composition is accounted for,
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their measure of social disorganization is not predictive of gang location. Gangs
form in high-crime neighborhoods, but the arrival of gangs in an area does not
alter local crime levels. The notable exception is a significant increase in shots
fired after gangs form in an area (Tita 1999).

An excellent example of the blending of quantitative spatial measures with
qualitative observational studies is Bernard Cohen’s (1980) ecological study of
street-level prostitution in New York City. Cohen finds that streetwalking spans
all levels of income across neighborhoods and census tracts of Manhattan.
However, he noticed important similarities in the block faces and street corners
frequented by prostitutes and johns. Using hand-drawn maps, Cohen identified
“hot spots” of prostitution activity. Relying on participant observation, he
recorded and quantified the amount of deviance in the study areas, as well as
the age, race, and gender of nearby residents. He extrapolated family structure
from census tract data.

Areas with a high incidence of prostitution were notable in their absence of
young children and young women. Not surprisingly, households in these areas
were much more likely to be made up of single adults and unrelated room-
mates. Cohen also noted several important crime-enhancing features of the
built environment, such as wide streets (to provide inconspicuous traffic flow 
of johns through the area), the types of business establishments in the area (to
attract the “right” clientele), and the spatial proximity of unlit alleys, parks, or
lots (to provide locations for sex acts). Although not widely recognized as such,
Cohen’s (1980) book,Deviant Street Networks,may be one of the first empiri-
cal studies to document the spatial and temporal intersection of “motivated”
offenders and the crime-facilitating properties of place proposed by the routine
activities theory (Cohen and Felson 1979).

Bernard Cohen’s work underscores the importance of specifying the correct
areal unit of analysis in ecological studies. When examining the presence of
streetwalkers as a function of various socioeconomic measures aggregated to
the level of neighborhoods or census tracts, there were few differences between
areas with prostitution and those without. It is only when Cohen examined sub-
census tract variation that important differences emerged. Modern GIS capabili-
ties, combined with point data on the locations of individual crimes, make it
feasible to routinely obtain measures of crime variables at these nontraditional
and smaller levels of aggregation.

Place-based theories of crime
Ecological theories look for explanations of individual actions in general fea-
tures of the social structure in which an individual is embedded. Place-based
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theories fall squarely within the theoretical tradition of social ecology, but are
more specific about the mechanisms by which structural context is translated
into individual action. The dominant theoretical perspectives derive from the
routine activities theory (Cohen and Felson 1979) and rational choice theory
(Cornish and Clarke 1986). In both cases, the distribution of crime is deter-
mined by the intersection in time and space of suitable targets and motivated
offenders. This spatial and temporal intersection is determined by the organiza-
tion of certain types of activities at specific places, ranging from highly struc-
tured environments like work and school to less structured environments in the
home and leisure places.

Routine activities
The routine activities theory was first introduced in Cohen and Felson (1979),
later refined in Felson (1986, 1994), and extended to crime pattern theory in
Brantingham and Brantingham (1993). Place is central to this perspective, serv-
ing as the locus where motivated offenderscome together with desirable tar-
getsin the absence of crime suppressors(who include guardians, intimate
handlers [Felson 1986], and place managers [Eck 1994]). This convergence of
crime opportunities in space and time is facilitated by various situational fea-
tures, of both the physical and social variety, that provide a context or setting
that is more or less conducive to crime (Clarke 1992).

Place can facilitate (or inhibit) crime in two ways. First, the physical or built
features of a place can decrease the social control capacities of various crime
suppressors. Such concerns motivate interest in the design of “defensible space”
(Jeffrey 1971; Newman 1972). For example, Newman’s study of public housing
suggests that highrise housing increases population density, but because resi-
dents live vertically, they are physically removed from monitoring activities in
public spaces, especially those at street level.7 These conditions leave this type
of housing with relatively few place managers who will monitor and control
public behavior and seriously limit the levels of informal social control exer-
cised over all forms of disruptive behavior from minor incivilities to more seri-
ous illicit activities. Roncek and Francik (1981) find elevated crime levels in
and near public housing even after including controls for the composition of the
resident population on a variety of attributes. This provides support for a crim-
inogenic role of the facility itself that is independent of the types of people who
are found there.

Second, aside from physical features, crime at places is apparently influenced
by the routine activities that occur there. Crime is not distributed evenly or
randomly over space. Instead, higher levels of crime plague places with some
types of facilities and not others. In some cases, crimes seem to be elevated by
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a target-rich environment—for example, thefts of 24-hour convenience stores,
auto thefts from large parking lots, or robberies of shoppers in heavily fre-
quented commercial areas (e.g., Engstad 1975; Duffala 1976; Brantingham and
Brantingham 1982). In others, certain activities such as alcohol consumption
seem to contribute to increased levels of violence (Roncek and Bell 1981;
Roncek and Pravatiner 1989; Roncek and Maier 1991; Homel and Clark 1995;
Block and Block 1995). Still other places seem to be prone to higher levels of
crime because of the types of people they attract and repel. Places with aban-
doned buildings or rundown housing with absentee owners are attractive to
illicit drug dealers who are looking for places where they can establish stable
marketing locations without fear of owner or neighbor complaints (Eck 1994).

Crime hot spots
The concentration of crime in identifiable places was noted in Brantingham and
Brantingham (1982). These crime hot spots are prime exemplars of the poten-
tial value of place in the analysis of crime. Sherman, Gartin, and Buerger (1989)
published one of the first studies to quantify what many qualitative studies had
suggested—namely, that crime in a city is highly concentrated in relatively few
small areas. The study found that 3.3 percent of street addresses and intersec-
tions in Minneapolis generated 50.4 percent of all dispatched police calls for
service. Similar patterns emerged in other cities (Pierce, Spaar, and Briggs
1988; Sherman 1992; and Weisburd and Green 1994). While often motivated
by pragmatic concerns about what interventions are likely to be effective in
reducing crime, results like these also serve to sharply focus crime theory on
developing satisfactory accounts of these apparently strong relationships
between crime and place.

Crime studies that examine the spatial distribution of crime clearly demonstrate
that certain land uses and population characteristics are associated with crime hot
spots. Roncek and Maier (1991) found a positive relationship between levels of
crime and the number of taverns and lounges located in city blocks in Cleveland.
The influence of taverns on crime was compounded when the taverns were locat-
ed in areas with more anonymity and lower guardianship. Five of the top ten hot
spots identified in Sherman, Gartin, and Buerger (1989) included bars. Cohen,
Gorr, and Olligschlaeger (1993) found that drug hot spots tended to be in areas
with nuisance bars, rundown commercial establishments, or areas with poverty
and low family cohesion as measured by female-headed households.

Skogan and Maxfield (1981) reported that environmental conditions such as
abandoned buildings, public incivilities such as fights and other minor assaults,
disorderly youths, broken windows or other forms of vandalism, public drug
use or drinking, prostitution, loitering, noise, litter, and obscene behavior
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increase community fear of crime. “Broken windows” and other public signs of
disorder may also contribute to actual increases in more serious crime as visi-
ble signs of urban disorder signal that a community has lost its ability to exer-
cise social control, further encouraging and perpetuating crime (Wilson and
Kelling 1982; Greenberg, Rohe, and Williams 1985). Likewise, vigorous law
enforcement strategies directed against various forms of public disorder and
nuisance violations may actually inhibit more serious crimes by establishing
visible signs of a vigilant and self-protective community (Boydstrun 1975;
Wilson and Boland 1978; Pate et al. 1985; Sherman 1986; Sampson and Cohen
1988; Kelling and Coles 1996). This suggests that crime hot spots may arise
first as concentrations of “soft” crimes that later harden to more serious crimes.

Whether or not hot spots contribute to crime in a causal way depends on
whether or not the elevated levels of crime observed at hot spots are systematic
(regular and predictable) and not just random occurrences. If hot spots are ran-
dom and can occur anywhere, then crime in these locations does not depend on
distinctive features found in the observed hot spots; and crime reduction efforts
that target these features are likely to fail. Thus, careful identification of hot
spots and methodologically sound analyses to establish whether they have
meaningful links to crime are crucial.

Spatial Data Analysis Tools
The spatial concentration of crime in hot spots leads naturally to their represen-
tation on crime maps. Maps of crime incidents permit rapid identification of the
geographic location of crime hot spots, but by themselves they contribute little
to understanding why crime is concentrated in certain locations. A crucial
aspect of pattern recognition techniques such as hot spot analysis is the deter-
mination of the extent to which patterns on the map reflect “true” clusters or
outliers or whether they are spurious. As is well known, simple visual interpre-
tation of the map is inadequate in this respect because the human mind is con-
ditioned to find meaning and identify patterns and clusters, even when the data
represented may be purely random. The use of sound cartographic principles
alone does not ensure that a proper interpretation is obtained (Rheingans and
Landreth 1995; Gahegan and O’Brien 1997; MacEachren and Kraak 1997).
What is needed is a careful structuring of the visualization strategy while sup-
plementing the visual aspects with quantitative information (Cleveland 1993).

Hot spot representation
A crime hot spot is a location, or small area within an identifiable boundary,
with a concentration of criminal incidents. These chronic crime places where
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crime is concentrated at high rates over extended periods of time may be analo-
gous to the small percentage of chronic offenders who are responsible for a
large percentage of crime.8 To date, little is known about the actual life cycle of
crime hot spots. Sherman (1995) and Spelman (1995) were first to invoke many
features of offender criminal careers to describe careers of hot spots in terms of
processes like initiation, growth, crime-type hardening or escalation in crime
seriousness, persistence, decline, displacement, and termination. Their research
also broke new ground by beginning to empirically explore the merits of this
characterization, looking for evidence of sustained offending over time in some
locations.

Minimally, crime hot spots share the key features of a boundary and criminal
events within that boundary (e.g., 911 calls, offense reports). Perhaps the easi-
est means of identifying hot spots is to partition a jurisdiction into a fixed set 
of boundaries (e.g., square grid cells, census block groups, or some other
boundary set) and to develop a set of rules (a “rule base”) using threshold val-
ues. Sherman and Weisburd (1995) objectively defined hot spots in terms of
location, time interval, crime types, and number of events.

Suppose that the boundaries are square grid cells of a fixed size and origin.
Then a rule for hot spot initiation at any grid cell might be the following: If the
cell were not a hot spot in the previous time period but the number of crimes
of a designated type now exceeds a specified threshold value, then the cell
becomes a hot spot during the current period. A rule base will incorporate life
cycle states, time intervals, threshold crime counts, and changes in crime
counts. Gorr, Olligschlaeger, and Szczypula (1998) are designing such a rule
base to empirically explore the numbers, durations, branching probabilities,
crime mixes, and concentrations of hot spots.

The choice of boundaries—fixed or ad hoc—is of particular interest in repre-
senting hot spots. Fixed boundaries (e.g., census tracts, police precincts, or uni-
form grid cells) have the advantage of giving rise to the space/time series data
commonly used for crime reporting and spatial modeling. Their disadvantage is
that hot spots may cross the fixed boundaries or vary in size. One example of
ad hoc clustering of observed crime point data are the ellipses created in STAC
(Spatial and Temporal Analysis of Crime) software (Block 1994). Such bound-
aries have the advantage of yielding sizes and shapes tuned specifically to indi-
vidual hot spots. They, however, do not yield a consistent collection of space
and time series data on crimes and enforcement activities. As modelers, we 
prefer fixed boundaries.

Hot spots are, by definition, small in area. Using visual inspection of pin maps
and threshold counts for “hard” and “soft” crimes, Sherman and Weisburd
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(1995) identified hot spots in Minneapolis, Minnesota, of no more than one
linear block of a street—an area in which a police officer can easily see and
be seen. Hot times were between 7:00 p.m. and 3:00 a.m. For drug markets in
Jersey City, New Jersey, hot spots were defined by intersections and the four
connected street blocks, and hot times were from noon to midnight (Weisburd
and Green 1994). This scale may be too small for most practical purposes. For
example, hot spots may move short distances over short time periods (e.g., dis-
placement to nearby locations in response to enforcement activities). Hot spot
areas of a few blocks in size or even larger may better accommodate such spo-
radic short-term moves within what is essentially the same activity space.

The presence of variations in the estimated effects of models arising from differ-
ences in the areal units that are selected for analysis is known as the modifiable
areal unit problem (MAUP) in geography (Holt et al. 1996). Widely varying
parameter estimates can result from reaggregating data by areal units of different
sizes. For example, Gehlke and Biehl (1934) found that correlation coefficients
tended to increase with the level of aggregation of census tracts. Fotheringham
and Wong (1991) found that changes in the parameter estimates of multiple lin-
ear regression models were complex and unpredictable when changing the scale
at which data were collected and aggregated. Though important in theory, MAUP
is likely to be of less concern in analyses of hot spots, because size is often dic-
tated by the need to represent crime hot spots for enforcement purposes, and this
function constrains the range of relevant sizes.

Hot spot modeling and analysis
Understanding the relationship between place and crime requires knowledge of
the dynamics of hot spot development over space and time, with special atten-
tion to the ways that a location’s facilities and utilization contribute to criminal
behavior. This sort of knowledge can be derived from combining theory with
exploratory and confirmatory empirical research. Several kinds of spatial mod-
els and analyses are appropriate for hot spots. Preliminary to actual causal
models, these include descriptive models and predictive models.

Descriptive models
The life cycle of hot spots includes various stages of development, the duration
of time spent in each stage, and branching probabilities of transitions between
the stages. A better understanding of hot spots requires space and time data of
crime and its covariates for a sample of cities. Those data should include a con-
sistent rule base for classifying fixed areas into non-hot spots and hot spots at
different stages of development. Then analysts will have a better basis for dis-
tinguishing random stochastic phenomena, such as regression to the mean
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(some hot spots fade on their own accord), from systematic hardening of
soft-crime hot spots to more serious crimes.

Predictive models
After description, the next step in understanding hot spots is building success-
ful predictive models. For example, the “broken windows” hypothesis posits
that a variety of soft crimes (e.g., vandalism and public order disturbances)
serve as leading indicators of serious crimes like assault and robbery. Leading
indicator models require multivariate data that include the dependent variable
(e.g., number of robberies per month) along with precursor leading indicator
variables that are lagged one or more time periods (e.g., number of gang- or
drug-related 911 calls from prior months). Lags may also be over space, such
as a simple total or weighted average of 911 calls at contiguous (nearby) loca-
tions in prior months.9

The Vector Autoregression (VAR) model is a common time series model for
estimating and testing leading indicators. Researchers have used VAR models
extensively for applied modeling and forecasting since the work of Sims (1980).
These are simple multivariate models in which a variable is explained by its
own past values and past values of all other variables (leading indicators) in the
system (Holden 1995). The Bayesian Vector Autoregression (BVAR) model is a
restricted form of VAR.

Introduced by Litterman (1980, 1986), BVAR relies on Bayes’ estimates of
priors to overcome collinearity and degrees of freedom problems that typically
arise in applications of vector autoregressive models. Doan, Litterman, and
Sims (1984) introduced the so-called Minnesota priors for BVAR. LeSage and
Pan (1995) introduced spatial contiguity to further specify the priors in regional
studies. BVAR models have been successful in time series analysis and forecast-
ing models for regional data, especially in exploratory analyses of the appropriate
time- and space-lagged model specifications (LeSage 1989, 1990; LeSage and
Pan 1995).

Granger and Newbold (1977, 224–226) introduced rules and tests for a weak
form of causality testing based on VAR and relative to the limited information
set of variables used. Now known as “Granger causality,” Factor A “Granger
causes” B if Lag A is a significant predictor of B, but Lag B is not a significant
predictor of A. Enders (1995, 315) presents a standard F-test to determine
Granger causality.
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Exploratory spatial data analysis
Recently, the set of methods for structuring the visualization of spatial data has
been referred to as exploratory spatial dataanalysis, or ESDA. As defined by
Anselin (1994, 1998, 1999a), ESDA is a collection of techniques to describe and
visualize spatial distributions; identify atypical locations or spatial outliers; dis-
cover patterns of spatial association, clusters, or hot spots; and suggest spatial
regimes or other forms of spatial heterogeneity (changing structure or changing
association across space). As such, ESDA forms a subset of exploratory data
analysis or EDA (Tukey 1977), but with an explicit focus on the distinguishing
characteristics of geographical data (Anselin 1989). In this section, we outline
how principles from ESDA are relevant in the analysis of spatial patterns in
crime. Specifically, we start by reviewing the concept of spatial autocorrelation
and how it can be applied to both point data (e.g., location of burglaries) and
areal data (e.g., number of homicides or homicide rate per census tract). We next
outline some recently developed approaches that focus on “local” indicators of
spatial association (or LISA) and discuss how these may be used to detect hot
spots and spatial outliers. Finally, we review the integration of these techniques
in an interactive computing environment.

The interest in quantification of patterns in maps has led to a large number of
spatial statistics and other map summaries, reviewed in the classic treatments
of spatial autocorrelation by Cliff and Ord (1973, 1981). Similarly, detection of
clusters and outliers in maps is a major concern in epidemiology and medical
statistics, and a large body of literature is devoted to the topic (e.g., as reviewed
in Marshall 1991). Formally, the presence or absence of pattern is indicated by
the concept of spatial autocorrelation,or the co-incidence of similarity in value
with similarity in location. In other words, when high values in a place tend to
be associated with high values at nearby locations, or low values with low val-
ues for the neighbors, positive spatial autocorrelation or spatial clusteringis
said to occur. In contrast, when high values at a location are surrounded by
nearby low values, or vice versa, negative spatial autocorrelation is present in
the form of spatial outliers.The point of reference in the analysis of spatial
autocorrelation is spatial randomness, or the lack of any structure. For example,
under spatial randomness, the particular arrangement of crimes on a given map
would be just as likely as any other arrangement, and any grouping of high or
low values in a particular area would be totally spurious.

Point pattern analysis
The formal assessment of the presence and extent of spatial autocorrelation
depends on the type of data under consideration. The simplest situation is when
only the location of a given phenomenon is known (for example, the street
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addresses where burglaries occurred). In this situation, the primary interest lies
in assessing whether these locations, abstracted as points on a map, are seem-
ingly randomly scattered across space, or instead, show systematic patterns in
the form of clusters (more points are systematically closer together than they
would be in a purely random case) or dispersion (more points are systematical-
ly further away from each other than under randomness). Point pattern analysis
is concerned with detecting when “significant” deviations from spatial random-
ness occur.10

Quadrat count method.The construction of tests for point patterns may be
approached in a number of different ways. A popular technique that is easily
carried out in a GIS environment is the quadrat count method, in which a
square grid is overlaid on the points. The number of points in each grid cell is
counted and compared with “expected” number under spatial randomness by
means of a chi-squared test of goodness-of-fit. While intuitive and readily
implemented, this approach suffers from a number of conceptual problems,
such as arbitrariness in the choice of the grid cell size and the possibility of
correlation between counts in nearby cells (spatial autocorrelation).

Kernel estimation.A natural extension of the quadrat approach is kernel esti-
mation, in which a smooth estimate of the intensity of the point process is
derived by means of a moving window over the data. In other words, the num-
ber of points within the moving window (sometimes transformed to improve
interpretation and visualization) is taken as an indicator of the intensity of the
event at that location (e.g., how many burglaries per square mile). Rather than
the points themselves, this intensity measure can be visualized in a map and
assessed for systematic deviations from randomness. A particular implementa-
tion of this technique consists of drawing many overlapping circles of variable
sizes and assessing the extent to which “clusters” may be present. For example,
this is implemented in the “geographical analysis machine” of Openshaw and
associates (Openshaw et al. 1987, 1988; for a recent review, see Openshaw and
Alvanides 1999).11

Kernel estimation or kernel smoothing is one method for examining large-scale
global trends in point data. The goal of kernel estimation is to estimate how
event levels vary continuously across a study area based on an observed point
pattern for a sample of points (Bailey and Gatrell 1995; Williamson et al.
1998). Kernel estimation creates a smooth map of values using spatial data.
The smoothed map appears like a spatially based histogram, with the level at
each location along the map reflecting the point pattern intensity for the sur-
rounding area.
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In kernel estimation, a moving three-dimensional function (k1) of a given
radius or “bandwidth” visits every cell of a fine grid that has been overlaid on
the study region or area. As the kernel visits each cell, distances are measured
from the center of the grid cell (s1) to each observation (si) falling within the
bandwidth (τ1). Each distance contributes to the intensity level of that grid cell,
with greater weight given to observations lying closer to the center of the cell
(see exhibit 1).

The choice of an appropriate bandwidth is crucial when applying kernel esti-
mation to point data, and can prove a significant weakness if selected arbitrari-
ly (see Silverman 1986). Bandwidth is crucial because it determines the amount
of smoothing applied to a point pattern. In general, a large bandwidth will result
in a large amount of smoothing, producing a fluid map with low intensity lev-
els. A smaller bandwidth results in less smoothing, producing a spiky map with
local variations in intensity levels. Ideally, bandwidth should represent the actu-
al distance between the points in the distribution. However, there is no steadfast
rule for determining bandwidth.12

Kernel estimation has been applied across a number of different fields, particu-
larly epidemiology. In epidemiological applications, a distribution of discrete
points, each of which represents the incidence of disease among the population,
is transformed into a continuous smoothed surface map indicating disease risk
(see Sabel 1998).13 By transforming spatial point patterns of criminal incidents
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into a smooth image, kernel estimation can be equally effective in visualizing
areas of criminal activity and risk.

Kernel estimation offers several practical benefits in the spatial analysis of
crime. The first benefit is accessibility. Kernel estimation allows analysts to
visually simplify and examine complex point patterns of criminal incidents.
The greater accessibility of point data on crime incidents can easily result in
data overload (Block 1998). Displaying even modest amounts of point data on
a map can quickly become confusing and uninformative. Kernel estimation
does not diminish the import of point-based spatial data. Instead, a smooth
image captures and displays hot spots and potential hot spots as areas of high
density. These areas of high density can then be verified by examining the level
of statistical significance of estimated hot areas to determine the likelihood of
observing levels this high if incidents are in fact distributed randomly over
space and time.

Kernel estimation also allows greater flexibility in defining the borders of hot
spots and in analyzing hot spot areas. Hot spot areas are often influenced by
natural boundaries that break up population areas, such as gullies and high-
ways. These boundaries make the areas irregular in shape. In addition, concen-
trations of crime often flow across police beats and jurisdictions rather than
being confined to predefined administrative boundaries. Therefore, whenever
the distribution of crime is not uniform, the contours that define hot spot areas
are unlikely to be the well-behaved circles or ellipses required in some crime-
clustering methods (e.g., STAC method in Block 1998). Kernel estimation
allows for flexible boundaries and the display of the intensity of criminal inci-
dents across an entire region.

Finally, kernel estimation can be important in analyzing incident patterns over
time. Density images can be compared for consecutive or corresponding time
periods (e.g., the same month or year-to-date comparisons in successive years).
These provide a context for interpreting short-term changes in relation to long-
term trends and seasonal patterns. Kernel smoothed maps also reveal the larger
spatial context of changes over time.

Distance statistics
Other point pattern techniques are based on the distance between the points,
either between each point and its nearest neighbor (nearest neighbor statistics)
or between all the points (second order statistics). The underlying rationale is
that when events are clustered in space, small interpoint distances should be
more prevalent than under spatial randomness. A large number of nearest
neighbor statistics have been suggested in the literature.14 Their properties 
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are either derived or approximated analytically, or, more interestingly, based on
a computational approach. The latter consists of simulating the location of the
same number of points as in the dataset (e.g., the total number of burglaries in
a given year) by randomly assigning locations, thus mimicking the null hypoth-
esis of spatial randomness. For each of the simulated patterns, the value of the
statistic (or statistics) can be computed, thus yielding a reference distribution to
which the statistic for the observed pattern can be compared. This provides an
intuitive and highly visual way to assess the degree of nonrandomness in a
point pattern. For example, this can be applied to the empirical cumulative dis-
tribution function for the nearest neighbor distances for each point, or to all the
distances between points.15

Nearest neighbor statistics have been extended to test for clusters in space and
time. For example, the Knox statistic (Knox 1964) consists of counting how
many pairs of events are closer in space and time than would be the case under
randomness.16 Although initially developed to detect clusters of disease inci-
dence, the application of these methods to criminal activity is straightforward.

The techniques discussed so far address so-called “general” levels of clustering
(or, global spatial autocorrelation) in the sense of assessing the extent to which
spatial randomness can be rejected. In many instances, it is interesting to locate
“where” the clusters may be present. For example, one may be interested in
finding out if the clusters center around particular locations of crime-inducing
facilities, such as liquor stores or 24-hour convenience stores. Such tests are

referred to as “focused” tests (Besag and Newell
1991) and relate the number of points in a cell (or
counts of events) to the distance from a “putative
source.” Again, the general principle underlying these
tests is that deviations from spatial randomness would
yield a higher frequency of points close to the puta-
tive source.17

Estimation of spatial point processes
Tests for point patterns or clusters of events are
implemented in a number of software packages, sev-
eral of which are readily available commercially or as
freeware/shareware. Most of these can also easily be
integrated in a GIS environment. For example, near-
est neighbor statistics and the K function are included
in the S+SpatialStats add-on to the S-Plus statistical
package (MathSoft 1996), which can be integrated
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with the ArcView GIS through the S+ArcView link (Bao et al. forthcoming).18

Infomap (Bailey and Gatrell 1995) contains a number of quadrat count meth-
ods, as well as nearest neighbor and second order statistics, together with a set
of basic mapping functions. A wide range of cluster and scan statistics are also
included in Stat! (BioMedware 1994), which, although developed with health
events in mind, can be readily applied to crime statistics. A specific focus on
pattern detection in the locations of crime incidents is implemented in the
CrimeStat package. This software tool, which was developed with the support
of the National Institute of Justice, can be linked to a variety of commercial
GIS software and spatial data formats (Levine 1999).

Areal analysis
So far, the discussion of spatial autocorrelation has dealt with situations where
the data come in the form of points, and their location is the primary focus of
interest. An equally important setting is that in which the data are collected for
areal units or “regions,” such as homicide counts or rates by county or census
tract.19 A large number of spatial autocorrelation tests have been developed to
assess the extent to which the spatial arrangement of values on a map shows
deviations from a null hypothesis of spatial randomness, as reviewed in Cliff
and Ord (1973, 1981), Upton and Fingleton (1985), and Griffith (1987), among
others.

A fundamental concept in the analysis of spatial autocorrelation for areal data
is the spatial weights matrix. This is a square matrix of dimension equal to the
number of observations, with each row and column corresponding to an obser-
vation. Typically, an element wij of the weights matrix W is non-zero if loca-
tions i and j are neighbors, and zero otherwise (by convention, the diagonal
elements wii equal zero). A wide range of criteria may be used to define neigh-
bors, such as binary contiguity (common boundary) or distance bands (loca-
tions within a given distance of each other), or even general “social” distance.20

The spatial weights matrix is used to formalize a notion of locational similarity
and is central to every test statistic. In practice, spatial weights are typically
derived from the boundary files or coordinate data in a geographic information
system (see Can 1996).

Viewed from a more technical standpoint, almost every test for “global” spatial
autocorrelation can be expressed as a special case of a general cross-product or
“gamma” statistic (Hubert 1985, 1987; Hubert, Golledge, and Costanzo 1981).
This statistic consists of a sum of cross-products between two sets of terms, one
related to the similarity in value between two observations, the other to their
similarity in location, or,Γ=ΣiΣjaij .wij. In this expression, the aij term corre-
sponds to value similarity, such as a cross product, xi.xj, or a squared difference
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(xi–xj)
2, while the wij are elements in a spatial weights matrix. Inference for

this general class of statistics is based on permutation. Specifically, a reference
distribution is constructed that simulates spatial randomness by arbitrarily
rearranging the values observed in a given map over the available locations
and recomputing the statistic for each of these random arrangements.

Classic statistics
Classic test statistics for spatial autocorrelation are the join count statistic,
Moran’s I and Geary’s c (Cliff and Ord 1973). The join count statistic is appro-
priate when the data are binary, for example, the presence (coded B for black) 
or absence (coded W for white) of arson fires by city block. The number of
times neighboring spatial units also have B in common is called a BB join
count.21 The tests are based on the extent to which the observed number of BB
joins (or, WW, BW) is compatible with a null hypothesis of spatial randomness.
Similarly, when the data are variables measured on a continuous scale (such as
crime rates or counts of homicides), Moran’s I and Geary’s c statistics measure
the deviation from spatial randomness. Moran’s I is a cross-product coefficient
similar to a Pearson correlation coefficient and scaled to be less than one in
absolute value. Positive values for Moran’s I indicate positive spatial autocorre-
lation (clustering), while negative values suggest spatial outliers.22 In contrast 
to Moran’s I, Geary’s c coefficient is based on squared deviations. Values of
Geary’s c less than one indicate positive spatial autocorrelation, while values
larger than one suggest negative spatial autocorrelation.23 Adjustments to
Moran’s I to account for the variance instability in rates have been suggested
in the epidemiological literature, for example, the Ipop statistic of Oden (1995).
Extensions of Moran’s I to a multivariate setting are outlined in Wartenberg
(1985).

Moran scatterplot
When variables are used in standardized form (that is, their mean is zero and
standard deviation one), the degree of spatial autocorrelation in a dataset can be
readily visualized by means of a special scatterplot, termed Moran scatterplot
in Anselin (1995, 1996). The Moran scatterplot is centered on the mean and
shows the value of a variable (z) on the horizontal axis against its spatial lag
(Wz, or Σj wijzj; i.e., a weighted average of the neighboring values) on the verti-
cal axis. The four quadrants in the scatterplot correspond to locations where
high values are surrounded by high values in the upper right (an above mean 
z with an above mean Wz), or low values are surrounded by low values in the
lower left, both indicating positive spatial autocorrelation. The two other quad-
rants correspond with negative spatial autocorrelation, or high values surrounded
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by low values (high z, low Wz) and low values surrounded by high values (low
z, high Wz). The slope of the linear regression line through the Moran scatter-
plot is Moran’s I coefficient. Moreover, a map showing the locations that corre-
spond to the four quadrants provides a summary view of the overall patterns in
the data. Hence, this device provides an intuitive means to visualize the degree
of spatial autocorrelation, not only in a traditional cross-sectional setting, but
also across variables and over time (Anselin 1998). Recent illustrative exam-
ples of the application of these concepts in homicide studies can be found in
Sampson, Morenoff, and Earls (1999) and Cohen and Tita (1999).

Distance-based statistics
An alternative perspective on spatial autocorrelation for data available at discrete
locations (points, areas) is to consider these as sampling points for an underlying
continuous surface in a geostatistical approach. For example, crime statistics by
police station would be used to estimate a continuous crime surface for the whole
city. The primary interest in this paradigm lies in spatial interpolation, or krig-
ing. The measure of spatial autocorrelation is taken to be a function of the
squared difference between the values for each pair of observations compared
with the distance that separates them. Formally, this is carried out in a variogram
(or, more precisely, a semi-variogram).24 One visualization of the variogram
consists of a scatterplot of the squared differences organized by distance band,
possibly with a box plot for each distance band—a variogram cloud plot or vari-
ogram box plot (see Cressie 1993; Haslett et al. 1991). Another visualization
focuses on each distance lag separately, in a spatially lagged scatterplot (Cressie
1984). The mean or median in the variogram cloud
plot for each distance band suggests an overall pattern
for the change in spatial autocorrelation with distance,
and a focus on outliers indicates pairs of observations
that may unduly influence this central tendency (see
also Majure and Cressie 1997; Anselin 1998, 1999a).

Local indicators of spatial 
association—LISA statistics
The measures of spatial autocorrelation reviewed so
far are general, or global, in the sense that the overall
pattern in the data is summarized in a single statistic.
Paralleling the focused tests of point pattern analysis,
local indicators of spatial association (LISA) provide
a measure of the extent to which the arrangement of
values around a specific location deviates from
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spatial randomness. Closely related to the focused tests, the Gi and Gi* statis-
tics of Getis and Ord (1992; Ord and Getis 1995) measure the extent to which
the concentration of high or low values within a given distance band around a
location deviates from spatial randomness. These statistics are designed to find
clusters of high or low values. They can be applied to each location in turn or
to using increasing distance bands away from a given location. A general frame-
work for LISA is outlined in Anselin (1995), where local forms are derived for
several global statistics, such as the local Moran and local Geary statistics.25 The
local Moran is closely related to the Moran scatterplot and indicates the presence
of local clusters or local spatial outliers. LISA statistics lend themselves well to
visualization by means of a GIS, for example, in symbol maps that show the
locations with significant local statistics. In addition, when combined with a
Moran scatterplot, the locations with significant local Moran can be classified 
in terms of the type of association they represent.

Estimation of spatial autocorrelation
Routines to test for spatial autocorrelation are found in a wide range of special
purpose as well as commercial software. An extensive listing is given on the
AI–GEOSTAT’s Web site (http://curie.ei.jrc.it:80/software). Other recent
reviews can be found in Legendre (1993) and Levine (1996). Most of these
software implementations are specialized and contain one or a few statistic(s).
Comprehensive treatments are the S+SpatialStats add-on for the S-Plus statisti-
cal system (MathSoft 1996) and the SpaceStat™ package (Anselin 1992). The
latter is the only system to date that contains both global and local spatial sta-
tistics. It is integrated with the ArcView GIS by means of an extension, which,
among other things, allows for the visualization of Moran scatterplot maps and
locations with significant LISA.26

Modern computational implementations of exploratory data analysis are based
on the paradigm of dynamically linked windows, in which the user interacts
with different “views” of the data on a computer screen. The views typically
consist of standard statistical graphics such as histograms, box plots, and scat-
terplots, but increasingly include a map as well. The dynamic linking consists
of allowing an analyst who uses a pointing device (mouse) to establish connec-
tions between data points in different graphs, highlight (brush) subsets of the
data and rotate, cut through, and project high dimensional data (for a recent
review, see Buja, Cook, and Swayne 1996). Geographical data can easily be
included in this framework when viewed as x, y points in a standard scatterplot.
A more extensive framework that also includes choropleth maps was originally
proposed in the Spider software of Haslett, Unwin, and associates (Haslett,
Wills, and Unwin 1990; Haslett et al. 1991; Unwin 1996; Unwin et al. 1996).
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Recent efforts in this regard also incorporate explicit-
ly spatial statistics, such as a variogram cloud or box
plot, Moran scatterplot, and LISA maps in a spatial
association visualizer (Anselin 1998).

A practical example of a link between a GIS and vari-
ous exploratory data analysis tools is represented by
the work of Symanzik and colleagues (1998, 1999).
Here, a form of software integration is obtained
between the ArcView GIS and the XGobi (Buja, Cook,
and Swayne 1996) and XploRe (Härdle, Klinke, and
Turlach 1995) EDA software packages. This link is
based on point data and allows for the brushing of a
variogram cloud plot. Each of the exploration tools can
be used in isolation or linked with the other. As long as
the data are represented by points, powerful visualiza-
tion can be obtained, including space-time dynamics
and complex multivariate linkages.27 For example, this
method can be used to track the location and frequency
of a given type of crime across space as well as over
time and to suggest potentially useful correlates. A
similar approach is taken in the implementation of
dynamically linked windows in the DynESDA exten-
sion for ArcView (Anselin and Smirnov 1998). Here, a
view in ArcView is augmented with a series of statisti-
cal graphs, including histograms, boxplots, scatterplots,
and Moran scatterplots that are all dynamically linked.
Using brushing and linking techniques, both multi-
variate as well as spatial associationbetween a num-
ber of variables can be assessed and visualized. A
recent application of this technique to the study of the
spatial diffusion of homicides is given by Messner and
colleagues (1999).

Spatial Modeling
The techniques of exploratory analysis reviewed in the previous section are
extremely useful in assessing the existence and location of nonrandom local
patterns in spatial data. However, they are also limited by the lack of mecha-
nisms to “explain” the observed patterns. EDA and ESDA are exploratory by
nature. They “suggest” potential associations between variables and elicit
hypotheses, but the formal testing of these hypotheses is left for confirmatory
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analysis, typically carried out by means of multivari-
ate regression modeling (Anselin and Getis 1992).

In the specific context of criminal justice, regression
analysis plays a crucial role in the attempts to explain
the causes of criminal activity (e.g., Land, McCall,
and Cohen 1990; Kposowa and Breault 1993;
DeFronzo and Hannon 1998). Until recently, the role
of space (and space-time) was not explicitly acknowl-
edged in the methodology used in these studies, but it
is central in a number of respects. For example, it is
well known that urban crimes such as theft and bur-
glary, as well as most categories of violent crimes,
are likely to be spatially concentrated in low-income
urban areas that have relatively high proportions of
unemployed persons and racial minorities. This spatial
concentration will tend to result in spatial autocorrela-
tion, which runs counter to the usual assumption of
independence in regression analysis. In addition, law
enforcement efforts (Chambliss 1994) and gang
activity (Cohen et al. 1998) vary spatially, strongly
suggesting the need for an explicit spatial perspective
(Roncek 1993) and the consideration of spatial hetero-
geneity (spatial structural change). A spatial perspec-

tive is further motivated by the findings of large-scale spatial differences for
various crimes (for example, urban, suburban, and rural as reported in the
Federal Bureau of Investigation’s Uniform Crime Reports as well as the Bureau
of Justice Statistics’ semiannual National Crime Victimization Survey). This in
turn has prompted a search for spatial mechanisms such as proximity and diffu-
sion to explain these phenomena (Tolnay, Deane, and Beck 1996; Morenoff and
Sampson 1997; Sampson, Morenoff, and Earls 1999).

The challenge of spatial effects
In most of these studies, the regression analysis employs data for cross-sectional
units, such as census tracts or counties. As is now increasingly recognized, in
this instance specialized methods of spatial regression analysis (spatial econo-
metrics) must be used to avoid potentially biased results and faulty inference
(Anselin 1988; Anselin and Bera 1998). This is due to the presence of spatial
effects,consisting of spatial dependenceand spatial heterogeneity,which vio-
late the basic assumptions underlying classical regression analysis. Statisticians
have long been aware of the problems associated with analyzing spatial (geo-
graphical) data, but spatial statistical techniques did not disseminate into the
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empirical practice of the mainstream social sciences
until recently (for a review, see Anselin 1999b).28

The motivation for the explicit incorporation of spa-
tial effects in regression models that explain criminal
activity is twofold. On the one hand, crime and
enforcement data are readily geocoded, but the spa-
tial scale of observation does not necessarily match
the spatial scale of the process under study. For
example, the occurrence of certain types of crimes,
say dealing in illicit drugs, may be explained by
socioeconomic variables and land use data collected
at the block level. However, if the illicit drug trading
zone for a given group covers multiple blocks, the
data for several units of observation will be correlat-
ed. Similarly, if the unmodeled variables such as
“social capital” or “sense of community” spill over
across multiple units of observation, a spatial correla-
tion of these “errors” will result. Hence, the concern
with accounting for the presence of spatial autocorre-
lation in a regression model is driven by the fact that
the analysis is based on spatial datafor which the
unit of observation is largely arbitrary (such as admin-
istrative units). The methodology focuses on making
sure that the estimates and inference from the regres-
sion analysis (whether for spatial or a-spatial models)
are correct in the presence of spatial autocorrelation.

On the other hand, much recent theoretical work in
urban sociology, economics, and criminology has
emphasized concepts related to the “interaction” of
agents, such as copycatting, social norms, neighbor-
hood effects, diffusion, and other peer group effects.
These theories focus on questions of how individual
interactions can lead to emergent collective behavior
and aggregate patterns (e.g., Brock and Durlauf 1995;
Akerlof 1997; Durlauf 1994; Borjas 1995; Glaeser,
Sacerdote, and Scheinkman 1996). Here, the need for an explicitspatial
modelis driven by theoretical concerns and the interest lies in a correct specifi-
cation of the form and range of interaction and the estimation of its strength.
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Spatial statistical techniques
The two different motivations for consideration of spatial effects in regression
models lead to methods to handle spatial dependence as a nuisance(data prob-
lems) versus substantivespatial dependence (theory driven) (Anselin 1989).
Formally, this results in techniques to model spatial dependence in the error
terms of the regression model or to transform the variables in the model to
eliminate spatial correlation (spatial filtering), versus methods to explicitly add
a spatial interaction variable as one of the regressors in the model. Common to
all methodological approaches is the need to rigorously express the notion of
“neighbor effects,” which is based on the concept of a spatial weights matrix,
discussed previously. A spatially explicit variable takes the form of a “spatial
lag” or spatially lagged dependent variable, which consists of a weighted aver-
age of the neighboring values. More precisely, the spatial lag of a dependent
variable at location i, yi, would be Σj wijyj, where the weighted sum is over
those “neighbors” j that have a nonzero value for element wij in the weights
matrix (or, in general, the weight is wij). For practical purposes, the elements
of the spatial weights matrix are often row-standardized, which facilitates
interpretation and comparison across models (for technical details, see
Anselin 1988, forthcoming; Anselin and Bera 1998).

A typical specification of a linear regression equation that expresses substantive
spatial interaction (or spatial autocorrelation) is the mixed regressive, spatial
autoregressive model,or spatial lagmodel. This includes, in addition to the
usual set of regressors (say, xi, the regressive part), a spatially lagged dependent
variable Σj wijyj, (the spatial autoregressive part), with a spatial autoregressive
coefficient ρ.29 The inclusion of a spatial lag term is similar to a temporal autore-
gressive term in time series analysis, although there are several important dif-
ferences that require a specialized methodology for estimation and testing.30

The interpretation of the spatial lag model is best illustrated with a simple
example. Say we were interested in explaining the crime rate by the usual
socioeconomic variables as well as by a police intervention measure, and
assume that the data are collected at the census-tract level. The spatial lag
would capture the average crime rate for neighboring tracts. This measure of
“potential” crime is one way to formalize the spatial interaction in the model.
Therefore, the significance and value of the autoregressive coefficient have a
direct interpretation as an indication of the strength of the spatial interaction. 
In our example, the estimate for ρ would suggest to what extent the crime rate
in each census tract is “explained” by the average of the neighbors.

There are two potential pitfalls in this interpretation. First, the spatial lag does
not “explain” anything (similar to a time lag in time series), but instead is a
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proxy for the simultaneity in the whole system. This is best seen in a formal
way, but for the sake of simplicity can be thought of as a spatial multiplier.
After transforming the model to reduced form, so only “exogenous” variables
remain on the right-hand side of the equation, it follows that the value of y at
each location (e.g., the crime rate) depends not only on the explanatory vari-
ables for that location (the xi), but also on these variables at all other locations,
suitably adjusted to reflect the effect of distance decay. In our example, the
presence of a spatial multiplier implies that a change in police intervention at
one location (census tract) not only affects the crime rate at that location, but at
all other locations in the system as well (suitably decayed), hence the notion of
a multiplier.31

The second problem is due to the use of aggregate entities, such as census tracts
or counties, as observational units. The interpretation of the autoregressive term
as an indication of “interaction” between units can easily lead to an “ecological
fallacy.” This follows from the fact that these units are not social agents them-
selves, but only aggregates (averages) of individual behavioral units. Drawing
inferences for individual behavior from relations observed at the aggregate level
can only be carried out under a strict set of assumptions (essentially imposing
extreme homogeneity), which is clearly unwarranted in the current context (for
an extensive discussion, see King 1997).32 An alternative interpretation is that the
spatial lag model allows for filtering out the potentially confounding effect of
spatial autocorrelation in the variable under consideration. The main motivation
for this is to obtain the proper inference on the coefficients of the other covariates
in the model (the β). For example, spatial autocorrelation of the lag variety may
result from a mismatch between the spatial extent of the criminal activity and the
census tract as the spatial unit of observation.33

From an estimation point of view, the problem with this model is that the spa-
tial lag term contains the dependent variables for neighboring observations,
which in turn contain the spatial lag for their neighbors, and so on, leading to
simultaneity (the spatial multiplier effect mentioned previously). This simul-
taneity results in a nonzero correlation between the spatial lag and the error
term, which violates a standard regression assumption. Consequently, ordinary
least squares (OLS) estimation will yield inconsistent (and biased) estimates,
and inference based on this method will be flawed. Instead of OLS, specialized
estimation methods must be employed that properly account for the spatial
simultaneity in the model. These methods are either based on the maximum
likelihood (ML) principle, or on the application of instrumental variable (IV)
estimation in a spatial two-stage, least-squares approach.34

In contrast to the lag model, there are a number of ways to incorporate the spa-
tial autocorrelation into the structure of the regression model error term. The
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most commonly used models are based on spatial processes, such as a spatial
autoregressive (SAR) or spatial moving average (SMA) process, in parallel to
the time series convention.35 The particular form for the process yields a nondi-
agonal covariance structure for the errors, with the value and sign of the off-
diagonal elements corresponding to the “spatial correlation” (that is, the
correlation between the error terms at two different locations).

An interesting aspect of this correlation structure is the range of interaction that
is implied. For a SAR process, every error term is correlated with every other
error term, but the magnitude of the correlation follows a distance decay effect.
In other words, the implied interaction is global, as in the spatial multiplier of
the spatial lag model. In contrast, the SMA process yields local interaction,
where only first and second order neighbors have a nonzero correlation. Since
this pertains to the error terms in a model, or the “ignored” or “unmeasurable”
effects, the two specifications also have different policy implications. For exam-
ple, if there were an unmeasurable “neighborhood” effect in our model of crime,
the SAR specification would imply that change in this effect in one location
affects all the locations in the system, whereas in an SMA specification this
change would only affect the immediate neighbors. However, more precisely,
these measurement errors only pertain to the precision of the estimates, and “on
average” their impact is zero on the predicted crime, in contrast to the spatial
multiplier in the lag model, in which shocks pertaining to the regressor (X) are
transmitted throughout the system.

In space, the error variances are also heteroskedastic, which is not the case in
the time domain (see Anselin and Bera 1998). The heteroskedasticity is induced
by the spatial process and will complicate specification testing (i.e., distinguish-
ing “true” heteroskedasticity from that induced by a spatial process). This is an
important distinction between the spatial error processes and their covariance
structure and the time series counterpart.

An alternative approach to handling spatial processes is to specify the magnitude
of the spatial error covariance as a function of the distance that separates pairs of
observations.36 This “direct representation” approach is inspired by geostatistical
modeling and lends itself well to spatial forecasting (or interpolation). In contrast
to the spatial process models, there is no induced heteroskedasticity. However, for
the direct representation approach to yield a valid covariance (e.g., to avoid nega-
tive variances), a number of restrictive assumptions must be satisfied (see e.g.,
Cressie 1993; Anselin forthcoming).

The estimation of spatial error models falls under the generic category of
regression models with nonspherical error variance. Technically, a form of gen-
eralized least squares will be applied, although in contrast to the time domain,
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there is no simple two-step estimation procedure. Instead, an explicit maximum
likelihood approach or generalized moment technique must be followed.37 In
these methods, the coefficient of the spatial model is considered a “nuisance”
parameter in the sense that it improves the precision of the estimates for the
regressors (β), but in and of itself is of little interest.

Compared with spatial dependence, spatial effects in the form of spatial hetero-
geneity can be handled in a fairly straightforward way with standard econometric
models. The resulting heteroskedasticity, varying coefficients, or structural insta-
bility is only distinct in the sense that the specification of the heterogeneity is in
terms of spatialor regional differences (e.g., different crime rates in central city
versus suburb). However, because spatial heterogeneity often occurs jointly with
spatial dependence (or the two are observationally equivalent), explicit considera-
tion of the latter is required in empirical applications. Examples of techniques
that address spatial heterogeneity are spatial analysis of variance (Sokal et al.
1993), spatially varying coefficients as some form of hierarchical linear modeling
in the spatial expansion method (Jones and Casetti 1992; Casetti 1997), locally
different regression coefficients in the spatial adaptive filter (Foster and Gorr
1986; Gorr and Olligschlaeger 1994), geographically weighted regression
(Brunsdon, Fotheringham, and Charlton 1996; McMillen and McDonald 1997),
and the correction for spatial outliers by means of Bayesian techniques (LeSage
1997, 1999).

When observations are available for a cross-section at different points in time,
in the form of panel data, it becomes possible to model complex combinations
of spatial heterogeneity and spatial dependence.38 For example, different model
coefficients can be specified for different subregions and/or different time peri-
ods; the spatial autoregressive coefficients can be allowed to vary over time,
etc. The types of methods appropriate for addressing such models consist of
seemingly unrelated regressions, error components, and Bayesian approaches,
in conjunction with a spatial lag or spatial error dependence. Overviews of the
methodological issues are given in Anselin (1988, ch. 10; 1990b, 1999b) and
LeSage (1995).

In practice, the most important aspect of spatial modeling may well be specifi-
cation testing. In fact, even if discovering spatial interaction of some form is
not of primary interest, ignoring spatial lag or spatial error dependence when it
is present creates serious model misspecification. Of the two spatial effects,
ignoring lag dependence is the more serious offense, since, as an omitted vari-
able problem, it results in biased and inconsistent estimates for all the coeffi-
cients in the model; and the inference derived from these estimates is flawed.
When spatial error dependence is ignored, the resulting OLS estimator remains
unbiased, although it is no longer most efficient. Moreover, the estimates for
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the OLS coefficient standard errors will be biased, and, consequently, t-tests
and measures of fit will be misleading.

Spatial model estimation
Tests for the presence of potential spatial effects are complicated by a number of
factors. First, as mentioned earlier, spatial processes yield heteroskedastic errors,
so that it will be difficult to distinguish true heteroskedasticity from that induced
by the spatial processes. The reverse is true as well, so that tests against spatial
dependence will be sensitive to the presence of heteroskedasticity and may point
to the wrong alternative. Second, the spatial lag and spatial error specifications
are highly related, so that tests against one form of dependence will also have
power against the other form, again complicating the specification search. Third,
all tests for spatial effects are based on large sample properties (asymptotics)
and their performance in small data sets may be suspect.

Despite these problems, however, there are a number
of practical guidelines that can be followed in empiri-
cal applications. The most straightforward testing
approach is to use Lagrange Multiplier tests that are
based on the residuals of an OLS regression. Separate
tests are available for a spatial lag and a spatial error
alternative, and a simple rule of thumb exists to guide
the researcher in the proper direction (the most signifi-
cant test suggests the proper alternative).39 Other tests
with high power are based on the application of
Moran’s I to regression residuals, which is a valid mis-
specification test against a wide range of alternatives
and applicable in various econometric specifications
(Anselin and Kelejian 1997; Kelejian and Robinson
1998, 1999; Kelejian and Prucha 1999b; Pinkse 1999).

Spatial econometric methods are not routinely incor-
porated in commercial software packages. Hence,
several authors have developed “tricks” to carry out
estimation and specification testing using macro or
script facilities in statistical computing software.
Examples are routines in Limdep, Gauss, Shazam,
and S-Plus in Anselin and Hudak (1992), and maxi-
mum likelihood estimation in SAS (Griffith 1993),
Matlab (Pace and Barry 1998), or R (Bivand 1999).
Estimation of spatial error models is included in
the S+SpatialStats add-on to the S-Plus software
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(MathSoft 1996), but the only comprehensive suite of routines to handle both
specification testing and estimation is contained in SpaceStat (Anselin 1992).

Conclusion
As we near the end of the 20th century, spatial analyses of crime remain poised
at the early stages of development. Many of the capabilities to support computer-
ized mapping and spatial statistical analyses emerged only recently during the
1990s. The promise of using spatial data and analyses for crime control still
remains to be demonstrated, and its usefulness depends on the nature of the
relationship between crime and place. If spatial features serve as actuating fac-
tors for crime, either because of the people or facilities that are located there,
then interventions designed to alter those persons and activities might well
affect crime. Alternatively, if the spatial distribution of crime is essentially ran-
dom, then targeting specific places is not likely to be an effective crime control
strategy.

Research aimed at sorting out the nature of the relationship between place and
crime is crucial and becoming increasingly feasible as spatial data capabilities
proliferate. One of the first priorities is research on the nature of crime hot
spots, especially the typical life course (or crime “career”) of areas with high
concentrations of crime, to determine whether the unusually high levels persist
for any length of time. While spatial analyses remain a promising tool, the very
early stage of research on the relationship between crime and place is reason
for a degree of caution. Considerably more research is needed before we look
to location as a primary target for crime control efforts. Both basic social sci-
ence research and well-designed applied research on specific police interven-
tions will be of value.

Notes
1. An overview of the literature, including the theoretical underpinnings of the crime-
place relationship and empirically based results, is available in Eck and Weisburd
(1995). See also Weisburd (1997).

2. See, for example, Sampson (1986) and Eck and Weisburd (1995).

3. See Ritzer (1988) for a critique of the Chicago School.

4. See the 1969 University of Chicago Press edition with new chapters of updated data.

5. The panel consisted of James Short, Robert Sampson, Robert Bursik, Ruth Horowitz,
Karen Heimer, and Ross Matsueda.
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6. For examples of empirical and theoretical treatments of social disorganization and
social control theories, see Bursik (1986, 1988), Bursik and Grasmick (1993), Sampson
(1986, 1995), Sampson and Groves (1989), Abbott (1997), and Wikstrom (1998).

7. To those physical dimensions, we would add the general disenfranchisement of resi-
dents from having a stake in maintaining both the physical and social environment of
this special type of housing.

8. Wolfgang and colleagues highlighted the impact of chronic offenders within
birth cohorts of boys in Philadelphia (Wolfgang, Figlio, and Sellin 1972; Wolfgang,
Thornberry, and Figlio 1987; Tracy, Wolfgang, and Figlio 1990). Similarly, skewed
distributions of offending, in which a small number of offenders are responsible for a
disproportionately large share of crimes, have been repeatedly confirmed both in official
criminal records (Blumstein and Cohen 1979; Shannon 1988; Haapanen 1990), and in
self-reports by offenders (Petersilia, Greenwood, and Lavin 1977; Peterson and Braiker
1981; Chaiken and Chaiken 1982, 1985; English 1990; Miranne and Geerken 1991;
Horney and Marshall 1991). Such distributions are quite common for a wide array of
behaviors (Greenberg 1991).

9. See discussion of spatial lags in the subsection titled “Areal analysis.”

10. Highly readable introductions to point pattern analysis are given in Boots and Getis
(1988), Upton and Fingleton (1985), and Bailey and Gatrell (1995). More advanced
materials are contained in Cliff and Ord (1973), Ripley (1981), Diggle (1983), and
Cressie (1993), among others.

11. Similar ideas, but with a more formal probabilistic basis, underlie the cluster tests 
of Besag and Newell (1991), Turnbull et al. (1990), and Kulldorff’s scan statistic
(Kulldorff and Nagarwalla 1995; Nagarwalla 1996; Hjalmars et al. 1996). The principle
of using a spatial window to compute smoothed rates from a GIS consisting of the
addresses of the occurrence of an event is also discussed in Rushton and Lolonis (1996).

12. There are several “rules of thumb” for determining bandwidth. For a discussion of
these rules of thumb, see Bailey and Gatrell (1995) and Williamson et al. (1998).

13. Surface maps arise naturally for representing geographical variations in risk. They
also can be derived for other attributes thought to be associated with an outcome. For
example, results from a sample of point estimates of crime offending risk by age and
birth cohort of offenders could be transformed to a smoothed surface of risk over all
ages and cohorts.

14. For example, Cressie (1993, 604) lists no less than 17 nearest neighbor statistics.
See also Ord (1990) for an extensive review.

15. This is the familiar K-function outlined in Ripley (1976); see also Bailey and Gatrell
(1995, ch. 3).
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16. For an extension and generalization, see Ederer, Myers, and Mantel (1964),
Mantel (1967), and Bailey and Gatrell (1995, ch. 4).

17. See also Diggle (1991), Lawson (1993), Diggle and Rowlingson (1994), Waller et al.
(1995), and Waller (1996) for reviews of the methodology.

18. A more comprehensive set of S-based software for point pattern analysis is
contained in the Splancs (spatial point pattern analysis code in s-plus) routines of
Rowlingson and Diggle (1993); see also Venables and Ripley (1998).

19. In Cressie’s (1993) taxonomy of spatial data statistics, these types of data are
referred to as lattice data.

20. For an extensive discussion of spatial weights, see Cliff and Ord (1981), Upton and
Fingleton (1985), and Anselin (1988).

21. Formally, a BB join count statistic is (1/2) ΣiΣj wijxi.xj, where wij are the elements of
a binary spatial weights matrix (i.e., one for neighbors, zero for others) and xi, xj take
on 1 for B, 0 for W. Similarly, WW joint counts are (1/2) ΣiΣj wij (1–xi)(1–xj). See Cliff
and Ord (1973, 1981) and Upton and Fingleton (1985) for extensive treatments.

22. Moran’s I = (N/S0) ΣiΣjwijzizj / Σi zi
2, where the zi are variables in deviations from

the mean, wij are elements of a possibly row-standardized spatial weights matrix and
S0 is a scaling factor equal to the sum of all the elements in the weights matrix. For
details, see Cliff and Ord (1973, 1981), and Upton and Fingleton (1985).

23. Geary’s c = (N-1)/2S0 [ΣiΣj wij (xi–xj)
2 / Σi zi

2], where the xi are the original 
variables and zi deviations from the mean; the other notation is as in footnote 22. 
For details, see Cliff and Ord (1973, 1981), and Upton and Fingleton (1985).

24. For a formal treatment, see Cressie (1993). A more introductory overview is offered
in Isaaks and Srivastava (1989).

25. LISA are different from regional measures of spatial autocorrelation, which are
global statistics applied to a subset of the data, as in Munasinghe and Morris (1996).

26. S+SpatialStats also contains a set of functions to carry out geostatistical analysis.
Specialized routines for geostatistics and kriging can be found in Deutsch and Journel
(1992) and Pannatier (1996).

27. For further details, see also Cook et al. (1996, 1997).

28. An extensive review of the statistical perspective is given in Cressie (1993).

29. In matrix notation, with y as an N by 1 vector of observations on the dependent 
variable, X as an N by K matrix of observations on the explanatory variables with
regression coefficient vector β, Wy as a vector of spatially lagged dependent variables
with spatial autoregressive coefficient ρ, and ε as a vector of random (independent,
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identically distributed, or i.i.d) errors, the model can be expressed as y = ρWy + Xβ + ε.
An extensive discussion of technical issues can be found in Anselin (1988, 1999b) and
Anselin and Bera (1998).

30. See Anselin and Bera (1998) for an extensive discussion of the differences between
dependence in spatial models and in time series models.

31. Formally, the reduced form is y = (I–ρW)-1Xβ + (I–ρW)-1ε, where W is the N by N
spatial weights matrix and I is an identity matrix (see Anselin 1988).

32. The ecological fallacy problem is known in spatial analysis as the “modifiable areal
unit problem,” which in essence means that different results will be found when the size
and arrangement of the spatial units of observation changes. The classic reference is
Openshaw (1979).

33. For a more extensive discussion of the idea behind spatial filtering, see Getis (1995).
Also note the difference between this concept of filtering and the spatial adaptive filter
model of Foster and Gorr (1986), which offers an approach to deal with spatial hetero-
geneity.

34. The original ML estimator is due to Ord (1975) (see also Anselin 1988 and Cressie
1993 for technical details). IV estimation is outlined in Anselin (1988, 1990a), Land and
Deane (1992), and Kelejian and Robinson (1993), among others.

35. In matrix notation, a spatial autoregressive error process (SAR) can be expressed as
ε = λWε + u, whereas a spatial moving average process (SMA) is ε = λWu + u (with
ε as the regression error terms,λ as the spatial parameter, W as the weights matrix, and
u as a vector of i.i.d. errors).

36. This type of model is commonly used in real estate analysis, originally in Dubin
(1988). See also Olmo (1995) and Basu and Thibodeau (1998) for some recent examples.

37. Reviews of the relevant issues can be found in Ord (1975), Anselin (1988), and
Kelejian and Prucha (1997, 1998, 1999a).

38. The panel data setting is different from true space-time dynamics, for example,
as the basis of space-time forecasting.

39. Reviews are given in Anselin and Florax (1995), Anselin et al. (1996), and Anselin
(forthcoming).
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