

ARCHIVED - Archiving Content

Archived Content

Information identified as archived is provided for reference, research or recordkeeping purposes. It is not subject to the Government of Canada Web Standards and has not been altered or updated since it was archived. Please contact us to request a format other than those available.

ARCHIVÉE - Contenu archivé

Contenu archivé

L'information dont il est indiqué qu'elle est archivée est fournie à des fins de référence, de recherche ou de tenue de documents. Elle n'est pas assujettie aux normes Web du gouvernement du Canada et elle n'a pas été modifiée ou mise à jour depuis son archivage. Pour obtenir cette information dans un autre format, veuillez communiquer avec nous.

This document is archival in nature and is intended for those who wish to consult archival documents made available from the collection of Public Safety Canada.

Some of these documents are available in only one official language. Translation, to be provided by Public Safety Canada, is available upon request. Le présent document a une valeur archivistique et fait partie des documents d'archives rendus disponibles par Sécurité publique Canada à ceux qui souhaitent consulter ces documents issus de sa collection.

Certains de ces documents ne sont disponibles que dans une langue officielle. Sécurité publique Canada fournira une traduction sur demande.

Crime Mobility Polygrams and the Geometry of Co-Offending

Marcus Felson,[?] Martin Andresen,^s and Richard Frank^s

? , In transition next semesterS , Simon Fraser University

Mobility triangle invented by

Ernest W. Burgess 1925

"Can neighborhood work have a scientific basis?" In R.E. Park, E.W. Burgess, and R.D. McKenzie (Eds.), The City: Suggestions for Investigation of Human Behaviors in the Urban Environment (pp. 142 – 155). Chicago, IL: University of Chicago Press.

Burgess only applied mobility triangles to areas, which can understate proximity

Mobility triangle perfected by

Liz Groff and Tom McEwen in a series of reports and papers, e.g.,

Groff, E.R. and T. McEwen (2007) Integrating distance into mobility triangle typologies. *Social Science Computer Review* 25: 210 – 238.

Specific locations on the map for offender, victim, crime location

Crime mobility triangle 21st Century – Modern data files make this work

Why important?

- Mobility triangles can summarize a lot of information, taking into account address of offender, of victim, and of the crime itself.
- The area covered tells us how geographically dispersed the crime's components are.
- Antidote to geo tecchies those who spew out ever more spatial detail, more trees, less forest

Minimum mobility triangle area

- Zero woman hits man within shared apartment
- (Technically, could be a few feet travelled)

Maximum mobility triangle area

Offender from Greenland comes to Australia and victimizes a tourist from Chile

- Greenland to Australia 14,769 km
- Chile to Australia 13,291 km
- Chile to Greenland 7,198 km

Mobility triangle area 47,764,430 sq km. NEGLECTING the curvature of the earth.
60 or older - Do this the hard way
Under 60 – Go to a triangle area calculator, e.g.: http://mste.illinois.edu/dildine/tcd_files/program17.htm More interesting than a single mobility triangle

- Sum up a group of mobility triangle areas
- Use measures of centrality and dispersal
- Thus compare nations, cities, crime types, offender types, or whatever you like
- Crime in space is very complex, so it's nice to extract some summary indicators

The long distance issue

- Many crime participants are visitors or tourists
- Extreme travel distances can dominate
- To reduce extreme values, use medians, not means
- Median are of crime mobility triangle summarizes the spatial expanse of a sample of crime incidents

Enter co-offenders

- Suppose two offenders live in different locations, commit their criminal act in a third place on a victim living in a fourth place
- You need a crime mobility polygon
- More than three points, too, when considering
 - multiple victims not living together
 - Bystanders
 - two crime scenes

Basic mobility polygon for two offenders

Crime pentangle (subtype of crime polygon for 3 offenders)

Oh my. It can also be concave

So an extra offender *might reduce* the area of a mobility polygon

Sometimes you may want to overrule the concavity

Some empirical work

- British Columbia
- Test case: Coquitlam, Surrey, in BC, metropolitan populations

Mobility polygon median area by number of victims and number of offenders

Number of Offenders	Number of <u>Victims</u> in Incident		
in incident	1	2	3
1	2.8	6.6	10.3
2	3.4	11.1	11.0
3	5.3	23.5 لا	2.0 لا
4	1.9	28.5	47.4

b Based on fewer than ten cases.

Conclusions so far

- Number of victims spreads out the mobility polygon the most
- Number of offenders has an impact, too
- Not automatic. When offenders number four, decreasing area.
- Coutner tendencies!
 - Co-offending draws on a larger area, BUT
 - propinquity can set up an offending group

Variations in Mobility Quadrangle area among several types of crime

Crime	Median	StdDev
Commercial Burglary	21.87	13.74
Theft From Motor Vehicle	12.31	45.20
Nonresidential) Burglary	9.14	61.29
Robbery	7.06	52.70
Theft of Motor Vehicle	6.57	53.78
Sexual Assault	4.85	512.69
Armed Robbery	4.63	55.53
Homicide 🛛	4.10	11.33
Assault	2.97	316.09
Aggravated Assault	2.32	6.94
Residential Burglary	2.14	10.35
Theft	1.60	169.43

Two offenders one victim – Surrey

b Based on fewer than ten cases

Note that

- Violent and property crimes intermingle for lesser and greater areas covered
- Theft from and of motor vehicles differ
- Standard deviations sensitivity to extreme values.
- But also the variation confirms Ron's basic point is right – crime types must be disaggregated quite a bit

Imaginary findings, future ECCA talks - A

	Speaker	Торіс	Imaginary finding
а	Croisdale-Brantinghams	Prolific offenders, victims	Less area
b	Wellsmith	Large facilities	More area
С	Homel and Murray	Bouncers, big bad places	More area
d	Cozens	Nighttime economy	More area
е	LeBeau	Hotels, motels	More area
f	Johnson, Summers	Rail connectivity	More area
g	Elffers	Pockets of local control	Less area
h	Park,Clare,Spicer,Clavert, Jensen, and Brantigham	Virtual environments	Use polygons in simulations
i	Kruger	Impact of walls	Effectiveness varies by travel

Imaginary findings . . . B

	Speaker	Торіс	Imaginary finding
j	Wainer	Hot products	More area when hotter
k	Morgan, Clare, Kingsley	Assaults on police, repeat	Repeats more local ?
Ι	Ruiter	Longer crime trips	The farther co-burglars travel, the closer they live to one another!
m	Natarajan, Zella,Yu	Drug trafficking organization	More organized, more local the offenders, less local the victims
n	Wartell	Research into practice	A mobility polygon can be shown
0	Shella	Hotspots in Brazil	Local-drawing vs. wide area hotspots
р	Jessica	Juvenile theft prevention	Do 25 techniques vary in effectiveness by localism?
q	Verma	Police systems	Wider polygon, wider police organization?
r	Hirschfeld	Terrorists	Immediate trips vs. preparatory trips

Imaginary findings . . . C

	Speaker	Торіс	Imaginary finding
S	Shukla, Bartgis	Meth manufacturing	Area polygons for different process stages
t	Rebocco	Hunting by rapists & molesters	Manipulative <opportunist <="" coercive<="" td=""></opportunist>
u	Hoke	Inmate behavior	Distances within prison!
V	Tompson	Scripts, waste dumping	Does far script differ from near script?
W	Pires, Clarke	Sequential foraging	Stage 1 wider area than stage 2?
Х	Maxfield, Clarke	Theft in affluent society	Focus prevention on smaller-area?
у	Newton	High crime areas	Local vs. wide high-crime areas
z	Rossmo	Military applications	Osama bin Laden's mobility polygon
aa	Frank	Activity paths of offenders	Directionality related to polygon area?
bb	Wuschke, Huitson, Brantingham	Mental helalth data & calls for service	Impact of health care facilities on mobility polygons

Imaginary findings . . . D

	Speaker	Торіс	Imaginary finding
CC	McCord	Motor vehicle theft	Soooooo many applications.
dd	Reynald	Taxonomy of guardianship	Type of guardianship affects polygon size
ee	Jones	Shaw -McKay & area traits	Link within-city area variations in polygons
ff	Bowers,Johnson,Guerett eSummers, Poynton	Displacement & diffusion	Does policing change polygons?
<u>g</u> g	Birks	Generative model simulations	Can you simulate these polygons?
hh	Ratcliffe	Attractors, generators	Good and bad bars & polygons
ii	Knutsson Madensen,Sousa,Eck	Crowd violence	How wide is crowd drawing area?
jj	Walker, Moak	Sexual predators, Internet	Do they look locally?

Evaluation

 Good news – We have passed the tipping point for becoming a science.

 Bad news – we have passed the tipping point for boring everybody to death.

Antidote

- Mobility polygons are useful for summarizing information
- When **the rest** of your study is complicated, insert something simple to help readers read and learn.

Thank you

felson@andromeda.rutgers.edu

I move to Texas State University around January 1, 2011