ARCHIVED - Archiving Content

Archived Content

Information identified as archived is provided for reference, research or recordkeeping purposes. It is not subject to the Government of Canada Web Standards and has not been altered or updated since it was archived. Please contact us to request a format other than those available.

ARCHIVÉE - Contenu archivé

Contenu archivé

L'information dont il est indiqué qu'elle est archivée est fournie à des fins de référence, de recherche ou de tenue de documents. Elle n'est pas assujettie aux normes Web du gouvernement du Canada et elle n'a pas été modifiée ou mise à jour depuis son archivage. Pour obtenir cette information dans un autre format, veuillez communiquer avec nous.

This document is archival in nature and is intended for those who wish to consult archival documents made available from the collection of Public Safety Canada.

Some of these documents are available in only one official language. Translation, to be provided by Public Safety Canada, is available upon request.

Le présent document a une valeur archivistique et fait partie des documents d'archives rendus disponibles par Sécurité publique Canada à ceux qui souhaitent consulter ces documents issus de sa collection.

Certains de ces documents ne sont disponibles que dans une langue officielle. Sécurité publique Canada fournira une traduction sur demande.

CENTRE CANADIEN DE RECHERCHES POLICIERES

TM-03-96 COLLECTION OF EVIDENCE FROM HEAVY COMMERCIAL VEHICLE INCIDENTS

By: Cst. Glenn Miller Surrey RCMP

TECHNICAL MEMORANDUM

Submitted by Surrey RCMP

December, 1995

NOTE: Further information about this report can be obtained by calling the CPRC information number (613) 998-6343 Copyright of this document does not belong to the Crown. Proper authorization must be obtained from the author for any intended use.

Les droits d'auteur du présent document n'appartiennent pas à l'État. Toute utilisation du contenu du présent document doit être approuvée préalablement par l'auteur.

EXECUTIVE SUMMARY

The incidence of heavy commercial vehicle collisions has risen dramatically. As a result the police traffic investigator is looking to new technology to collect the necessary investigation data. This memorandum compares five instruments - Shot Marker from Max Automotive, MEA Fifth Wheel Assembly, Bowmonk Skidman, the G-Analyst and the Vericom VC 200.

SOMMAIRE

Le nombre de collisions impliquant des véhicules lourds commerciaux a augmenté de façon coinsidérable. Les policiers doivent donc se tourner vers de nouvelles technologies pour recueillir les données necessaires à leurs enquêtes. Cette etude comparative porte sur cinq appareils : le Shot Marker de Max Automotive, le Fifth Wheel Assembly de MEA, le Skidman de Bowmonk, le G-Analyst et le Vericom VC 200.

Collection of Evidence from Heavy Commercial Vehicle Incidents

A Preliminary Investigation of Alternative Data Collection Methods

Glenn Miller, Cst Surrey RCMP Surrey, B.C. 95-12-10

Overview

Commercial Vehicle Collisions - The Current Situation

The incidence of heavy commercial vehicle collisions is rising dramatically. Claims for Commercial Vehicle Collisions increased by more than \$18 million between 1992 and 1994.

For the amount of distance travelled, heavy commercial vehicles are involved in relatively few collisions. The collisions they do become involved in, however, tend to be very serious. The problem with the lack of frequency means that there is little opportunity to get proficient at collecting the required data from these incidents.

With this in mind, we set out to do some testing to validate some new instrumentation which is becoming commonplace in commercial vehicles, and some new devices which could be used after the fact by Collision Analysts / Reconstructionists.

This seminar was designed to give you adequate knowledge of the available instrumentation, and to provide data which can be used to validate the findings of onboard instrumentation. There is an identifiable need to continue this research, and it is hoped that this information will give you a basis to begin.

Testing took place on two days, the 20th and 2 1st of November 1995, at Boundary Bay. Two large commercial vehicles were instrumented and tested. One was a 1995 Peterbilt tractor from J&R Rentals, and the other was a Kenworth tractor from Canada Safeway. The Peterbilt was equipped with self adjusting brakes and was pulling a trailer which was also rented for the testing. The Canada Safeway tractor was equipped with the Cummins Engine Management system which records data relevant to fleet management. This system also records panic stops.

Overview Page 1

Instruments Tested

Shot Marker from Blue Max Automotive

Both vehicles were equipped with a shot marker which was attached to the rear cross member of the tractor. This device was wired to the brake light on the tractor.

This shot marker uses a door lock motor (as opposed to a solenoid) and had been tested previously and found to operate with a comparable response time to solenoid equipped bumper gun systems.

This particular design was patterned after a previous model, which had been found to be extremely reliable.

MEA Fifth Wheel Assembly and Computer

MacInnis Engineering Associates donated the use of their Fifth Wheel and computer for acquiring speed and deceleration data from the tests. They also donated their time and experience to interpreting the results.

The fifth wheel assembly was attached to the rear cross member of the tractor and was calibrated at the scene. The data was sampled 32 times per second from approximately one second prior to braking to 15 seconds after the onset of braking.

The data collected was then saved in a spreadsheet application for interpretation.

Instruments Tested Page 2

BOWMONK SkidMan g-force Instrument

Two Bowmonk SkidMan analyzers were used. One was certified accurate from the factor) and the second was displaying the caption, "I Seed Calibration!". The Bowmonk SkidMan demands calibration after a set time limit and this message doesn't necessarily indicate a fault in the system,

The two Bowmonk devices reliably registered similar readings.

The Bowmonk SkidMan is a self contained unit in a hard case which can easily be set up and armed. It could have some practical applications in the realm of enforcement as well.

G-Analyst g-force Instrument

A G-Analyst was also used in the tests on day 2. It consists of two parts, the computer and display unit which contains the data collected, and the sensor unit which is mounted securely on the floor.

Caution should be exercised when using instruments such as the Vericom VC200 and the G-Analyst to determine road friction coefficients at collision sites.

The Vericom results should incorporate the road grade in the direction of the skid because the instrument, when used correctly, is calibrated at the actual test site.

The G-Analyst works differently. Its calibration sequence is designed to determine a true level. Its acceleration results must therefore be compensated for grade.

VERICOM VC 200

The VERICOM was loaned to the testers by the Delta Municipal Police Department. It is designed to measure g-force and to calculate the mu, by tripping automatically at the onset of braking. At times it failed to trip and therefore there was no data collected from this instrument. The VERICOM failed more often than any of the other devices, but this could have been due to a lack of experience with the product.

Caution should be exercised when using instruments such as the Vericom VC200 and the G-Analyst to determine road friction coefficients at collision sites.

The Vericom results should incorporate the road grade in the direction of the skid because the instrument, when used correctly, is calibrated at the actual test site.

Instruments Tested Page 3

Data Collection for Heavy Commercial Vehicle Collision Investigation A Preliminary Investigation

The G-Analyst works differently. Its calibration sequence is designed to determine a true level. Its acceleration results must therefore be compensated for grade.

Instruments Tested Page 4

Testing Methodologies

Purpose of the Testing

The purpose of the testing was to determine whether the instruments tested gave similar results. This was an essential component of the evaluation process. The most glitzy piece of equipment is of absolutely no value if it doesn't produce accurate, consistent data with a high degree of reliability.

To this end, the trucks were equipped with a fifth wheel recording device which was connected to a computer for the purposes of downloading the wheel travel. The fifth wheel was attached to the rear cross member of the tractor unit. The computer was programmed to collect wheel speed data at a rate of 32 samples per second. The fifth wheel assembly was provided by MacInnis Engineering Associates and was installed and calibrated by engineers from MacInnis. It was operated from the computer in the cab of the truck, and was run by an engineer from MacInnis.

The G-Analyst was provided for the second day of testing by Constable Lorne Derkson of the Langley RCMP. It was installed and operated under his supervision. It was configured to collect the data throughout the day and the data was downloaded following all of the tests.

A shot marker was also installed on the truck and was mounted on the rear cross member of the tractor immediately next to the fifth wheel assembly. The shot marker was connected to the brake lamp assembly at the rear of the tractor.

The Vericom VC200 was provided by the Delta Municipal Police Department and was mounted according to the manufacturer's directions on the front windscreen of the truck. It was set to automatically trip and record each stop, but it experienced some failures. The results charts simply show a zero where the Vericom VC200 failed to trip.

The truck from Safeway Canada was equipped with an engine management system called the Road Relay TM. It is an advanced system which records various operating parameters. Of interest to Collision Investigators is it's ability to record panic stops. The Road Relay TM detects

Testing Methodologies Page 5

a panic stop and keeps the data from the 45 seconds immediately preceding the panic stop. to a point 14 seconds following the onset of braking. The parameters kept are; speed, RPM, Clutch use and Brake use. These parameters can be printed out for a second by second analysis.

The Bowmonk SkidMan data was printed out and then downloaded after the testing for analysis. The results are presented in table format in the section titled *Findings*.

Process for determining the g results of each instrument

Bowmonk SkidMan

The g values of the results from the Bowmonk Skid-Man devices is calculated by the instrument by default. The Mean Deceleration figure was used for the purposes of comparison, as it is the most straightforward method of collecting the data.

Shot Marker (Bumper Gun)

The normal process for calculating mu was used with the shot marker. The speed was measured by Radar, the distance from the chalk mark to a point beneath the final rest position of the shot marker was measured, and the results were applied to the formula to determine mu from Speed and Distance.

$$\mu = \frac{S^2}{254D}$$
 or, in this case $g = \frac{S^2}{254D}$

MEA Fifth Wheel

The fifth wheel presented a small problem, but a workaround was found. On the day of testing, there was no operable device to provide a signal to the computer the instant the brake pedal was depressed. This meant, that there was no corresponding data stored as to when the brakes were actually applied. Since this is an air brake equipped vehicle, the system lag would not be calculated and therefore, the samples obtained could differ from some of the other instrumentation.

The workaround was relatively simple. Since the fifth wheel samples distance 32 times per second, and calculates the deceleration force with each sample, the standard method of calculating the Mean Deceleration is to average all of the readings taken during braking. The distance the vehicle travelled from the onset of braking to final rest was known from the results of the shot marker test.

Therefore, the distance from the shot marker test was subtracted from the final rest distance of the fifth wheel, and the point where the brakes were applied could be easily located within the data.

Testing Methodologies Page 6

Vericom VC200

The Vericom VC200 was set to automatically trip when it sensed deceleration. It then calculated the results automatically and displayed them on a screen. The Vericom VC200 displays two results, both a peak reading and an Average g value. The Average g was used for our purposes.

Caution should be exercised when using instruments such as the Vericom VC200 and the G-Analyst to determine road friction coefficients at collision sites.

The Vericom results should incorporate the road grade in the direction of the skid because the instrument, when used correctly, is calibrated at the actual test site.

G-Analyst

The G-Analyst was also set to trip automatically when it sensed a sudden deceleration. It was-set to collect the data from the tests and was removed from the vehicle. The data was then downloaded to a floppy disk for analysis later.

The G-Analyst data analysis program is an artifact of the days of DOS software. Had the limitations of this software been known prior to downloading the data, it would have been saved in a .pm format to permit analysis via a spreadsheet application. The g force was calculated and registered by the G-Analyst at a rate of ten samples per second. The results of these scans were averaged over the total stopping distance to calculate the average g force. The results of these calculations are shown in the table in Appendix "A".

Caution should be exercised when using instruments such as the Vericom VC200 and the G-Analyst to determine road friction coefficients at collision sites.

The G-Analyst calibration sequence is designed to determine-a true level. Its acceleration results must therefore be compensated for grade.

Tostiny Methodologies Page 7

Findings

Similarities

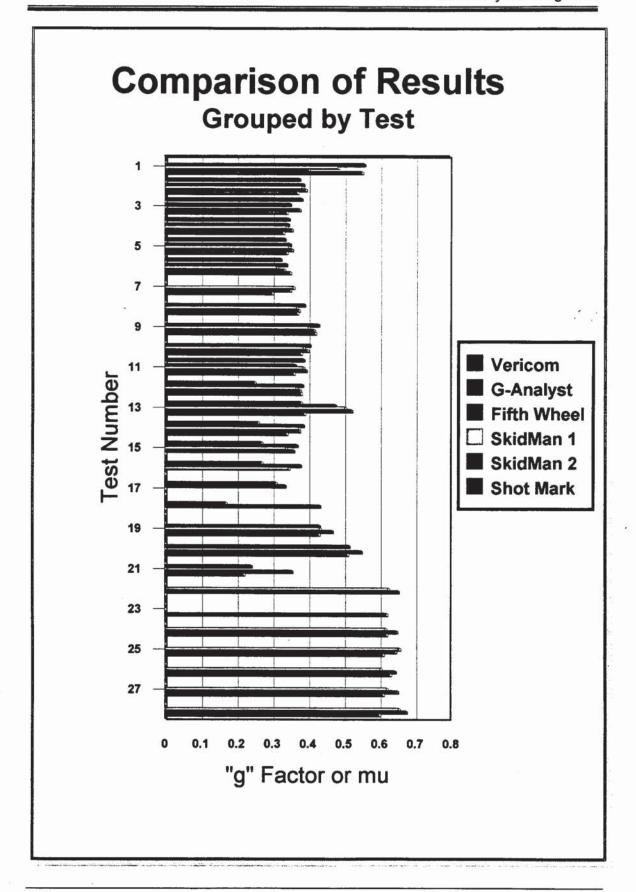
The results, taken in their totality, show a remarkable consistency, given the wide range of technologies which calculated the data.

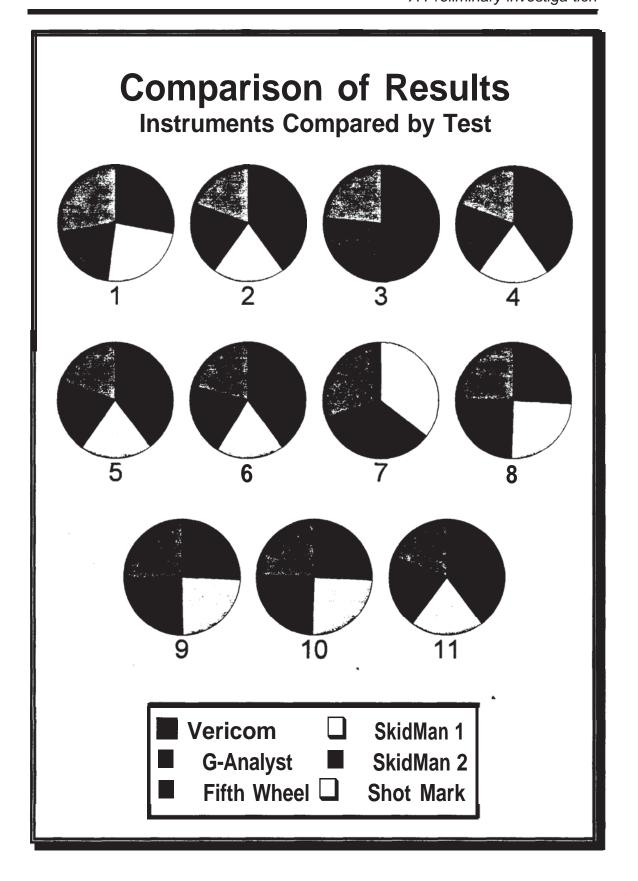
For the purposes of charting the data collected, when an instrument failed, the data is represented as zero. This ensures that there will be no misleading information in the charts.

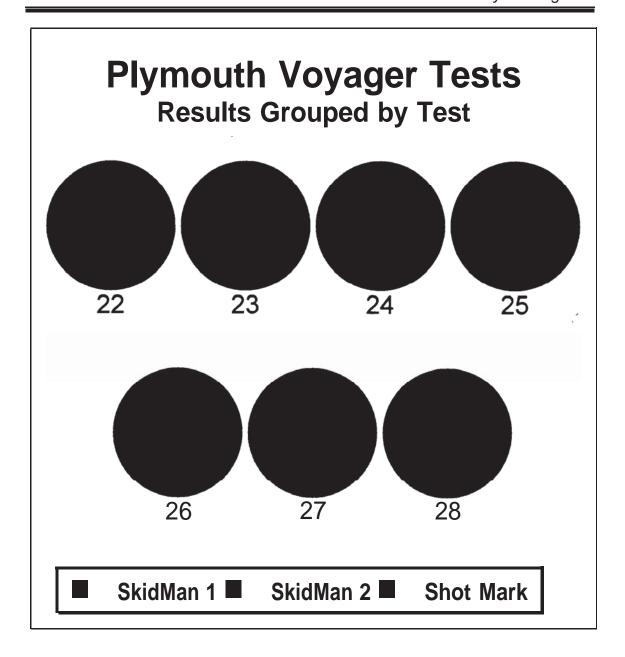
To fully understand the charts, the details of the tests have been assembled into Table form.

		Test Notes
Test	Vehicle	Notes
1	1995 Peterbilt with trailer	Lock-up attempted at ~50 km/h. Data failure with fifth wheel. Concrete surface, dry. Radar @ 48 km/h.
2	1995 Peterbilt with trailer	Lock-up attempted at ~50 km/h. Concrete surface, dry. Radar @ 49 km/h.
3	1995 Peterbilt with trailer	Lock-up attempted at ~50 km/h. Concrete surface, dry. Radar @ 48 km/h.
4	1995 Peterbilt with trailer	Lock-up attempted at ~50 km/h. Concrete surface, dry. Radar @ 49 km/h. Both SkidMan units placed side-by-side in cab of truck.
5	1995 Peterbilt with trailer	Lock-up attempted at -50 km/h. Concrete surface, dry. Radar @ 50 km/h. SkidMan 2 placed on rear of trailer. 16.60 meters rearward of SkidMan 1.
6	1995 Peterbilt with trailer	Lock-up attempted at -90 km/h. Concrete surface, dry. Radar @ 85 km/h. SkidMan 2 placed on rear of trailer. 16.60 meters rearward of SkidMan 1.

7	1995 Peterbih with trailer	Lock-up attempted at -80 km/h. Concrete surface, dry. Radar @ 84 km/h. Computer for fifth wheel failed. SkidMan 2 was placed on roof of tractor.
8	1995 Peterbilt with trailer	Lock-up attempted at -80 km/h. Concrete surface, dry. Radar @ 81 km/h. SkidMan 2 was placed on roof of tractor.
9	1995 Peterbilt with trailer	Lock-up attempted at ~100 km/h. Concrete surface, dry. Radar @ 98 km/h. SkidMan 1 was tilted at -7% to the front, SkidMan 2 was tilted -140 from the front.
10	1995 Peterbilt with trailer	Lock-up attempted at ~100 km/h. Concrete surface, dry. Radar @ 106 km/h. SkidMan 1 was triggered by the pedal force transducer, SkidMan 2 was internally triggered.
11	1995 Peterbilt with trailer	Lock-up attempted at -50 km/h. Concrete surface, dry. Radar @ 49 km/h.
12	1995 Peterbilt with trailer	Lock-up attempted at -50 km/h. Asphalt surface, dry. Radar @ 60 km/h. Brakes were backed off manually to the legal limit (2 inches)
13	1995 Peterbilt with trailer	Lock-up attempted at -50 km/h. Asphalt surface, dry. Radar @ 57 km/h. Brakes were backed off manually to the legal limit (2 inches)
14	1995 Peterbilt with trailer	Lock-up attempted at -60 km/h. Asphalt surface, dry. Radar @ 56 km/h. Brakes were backed off manually to the legal limit (2 inches) NO STEERING AXLE BRAKES.
15	1995 Peterbilt with trailer	Lock-up attempted at -60 km/h. Asphalt surface, dry. No Radar reading as Shot Marker failed. Brakes were backed off manually to the legal limit (2 inches) NO STEERING AXLE BRAKES.
16	Canada Safeway Kenworth	No Trailer. Tests to validate the Road Relay system. Panic stop from 60 km/h. No radar reading as the Shot Marker failed. Results from Road Relay matched those from fifth wheel.
17	Canada Safeway Kenworth	No Trailer. Tests to validate the Road Relay system. Panic stop from 60 km/h. No radar reading as the Shot Marker failed. Results from Road Relay matched those from fifth wheel.
18	Canada Safeway Kenworth	No Trailer. Panic stop from 32 km/h. No radar reading as the Shot Marker failed.
19	1995 Peterbilt with trailer	Lock-up attempted at -60 km/h. Asphalt surface, wet. Radar @ 58 km/h. Brakes were backed off manually to the legal limit (2 inches) Brakes were run until HOT.

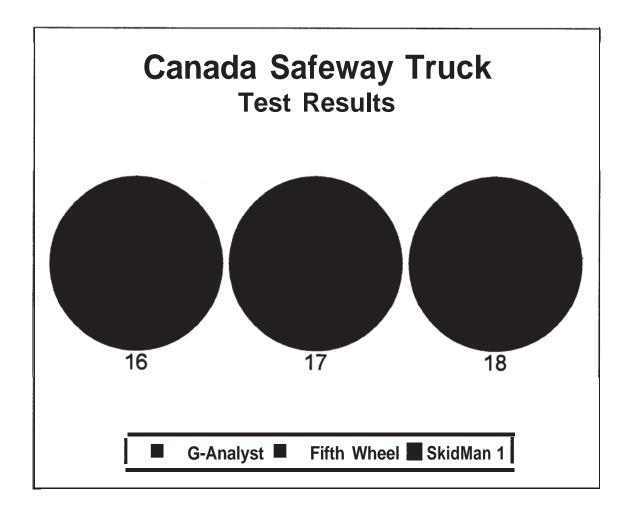

findings Page 9


	100% B . 1 11	T 1
20	1995 Peterbilt no trailer	Lock-up attempted at -50 km/h. Asphalt surface. wet
		Radar @ 50 km/h. Brakes were backed off manually
		to the legal limit (2 inches) Brakes were run until HOT.
21	1995 Peterbilt no trailer	Lock-up attempted at -50 km/h. Asphalt surface, wet.
		Radar @ 48 km/h. Brakes were backed off manually
		to the legal limit (2 inches) Front brakes were
		completely backed off. Brakes were run until HOT.
22 I	Plymouth Voyager	Bumper Gun Failed
23 I	Plymouth Voyager	Skid-Man 1 was mounted on the floor between the front
		seats. Skidman 2 was placed in a cupboard at the rear
		of the vehicle, 1.45 meters to the rear and 0.72 meters
		higher. Speed from Radar was 55 km/h and the slide
		distance was 19.00 meters.
24 I	Plymouth Voyager	SkidMan 1 was mounted on the floor between the front
		seats. SkidMan 2 was placed in a cupboard at the rear
		of the vehicle, 1.45 meters to the rear and 0.72 meters
		higher. Speed from Radar was 64 km/h and the slide
		distance was 25.75 meters.
25 I	Plymouth Voyager	SkidMan 1 was mounted on the floor between the front
		seats. SkidMan 2 was placed on the floor at the rear of
		the vehicle, 1.45 meters to the rear. Speed from Radar
		was 61 km/h and the slide distance was 23.90 meters.
26 I	Plymouth Voyager	SkidMan 1 was mounted on the floor between the front
		seats. SkidMan 2 was placed on the floor at the rear of
		the vehicle, 1.45 meters to the rear. Speed from Radar
		was 62 km/h and the slide distance was 23.90 meters.
27 I	Plymouth Voyager	Both SkidMan devices mounted on floor side by side.
		Speed from Radar was 62 km/h and the slide distance
		was 24.65 meters.
28 I	Plymouth Voyager	Both SkidMan devices mounted on floor side by side.
		Speed from Radar was 62 km/h and the slide distance
		was 24.65 meters.


The information in the table above, should be used when reading the following table and chart. Most often, discrepancies between instrumentation can be explained from the information in the table.

	S	ummation	of Mu Va	lues from	Testing				
Test	Instrument								
	Vericom	G-Analyst	Fifth Wheel	SkidMan 1	SkidMan 2	Shot Mark			
1	0.000	0.000	0.556	0.483	0.401	0.550			
2	0.375	0.000	0.386	0.383	0.393	0.370			
3	0.381	0.000	0.350	0.000	0.376	0.340			
4	0.346	0.000	0.344	0.339	0.354	0.330			
5	0.335	0.000	0.350	0.347	0.355	0.340			
6	0.323	0.000	0.339	0.312	0.333	0.350			
7	0.000	0.000	0.000	0.359	0.350	0.300			
8	0.000	0.000	0.389	0.368	0.374	0.370			
9	0.000	0.000	0.429	0.401	0.417	0.420.1			
10	0.000	0.000	0.404	0.388	0.398	0.380			
11	0.387	0.000	0.364	0.387	0.394	0.360			
12	0.000	0.250	0.384	0.367	0.378	0.380			
13	0.214	0.380	0.476	0.504	0.521	0.390			
14	0.000	0.260	0.368	0.374	0.376	0.340			
15	0.000	0.270	0.368	0.338	0.359	0.000			
16	0.000	0.270	0.378	0.346	0.000	0.000			
17	0.000	0.310	0.335	0.000	0.000	0.000			
18	0.000	0.170	0.432	0.430	0.000	0.000			
19	0.000	0.000	0.431	0.433	0.467	0.430			
20	0.000	0.000	0.514	0.000	0.548	0.510			
21	0.000	0.000	0.240	0.000	0.354	0.220			
22	0.000	0.000	0.000	0.624	0.652	0.000			
23	0.000	0.000	0.000	0.000	0.000	0.620			
24	0.000	0.000	0.000	0.617	0.648	0.620			
25	0.000	0.000	0.000	0.656	0.645	0.610			
26	0.000	0.000	0.000	0.603	0.644	0.630			
27	0.000	0.000	0.000	0.621	0.650	0.610			
28	0.000	0.000	0.000	0.654	0.674	0.600			

NOTE: Where the chart shows a result of "0.000", this means that the system either failed to provide a reading, or was not used for that test.



This chart shows the representative value of each instrument at each test. As it ignores zero values, which indicate that an instrument failed, it shows the relationship between each instrument. If all of the instruments returned an identical value, they would all share equal space on the pie chart.

The purpose of the tests with the Plymouth Voyager was to attempt to confuse the Bowmonk SkidMan instruments. As the chart indicates, all attempts to confuse this instrument failed.

The chart on the next page is identical in nature, but only shows the tests involving the truck from Canada Safeway. Since there were various equipment failures when testing the Canada Safeway truck, the data appears incomplete, however, it acts as an accurate representation of the relationships between the instruments which did function.

Of special interest here is the result from the G-Analyst in Test #18. More research will be necessary to understand this failure.

Data Collection for Heavy Commercial Vehicle Collision Investigation

A Preliminary Investigation

G-					nber 1995 a	t Boundary	Bay
	Mu value	(g) for each	time increm	ent			
	Test 12	Test 13	Test 14	Test 15	Test 16	Test 17	Test 18
Time (Seconds)							
0.1	0.01	0.13	0.02	0.18	0.04	0.10	0.18
0.2	0.03	-0.01	0.19	0.47	0.32	0.49	0.19
0.3	0.04	0.40	0.47	0.43	0.21	0.58	0.00
0.4	0.30	0.49	-0.01	0.38	0.49	-0.01	0.20
0.5	0.03	0.51	0.43	0.32	-0.01	0.59	0.20
0.6	0.51	0.57	0.38	-0.01	0.49	0.59	0.21
0.7	0.41	0.58	0.38	0.35	0.49	0.59	0.21
0.8	0.40	-0.01	0.38	0.39	0.50	0.51	0.23
0.9	0.35	0.59	0.38	0.33	0.50	-0.02	0.00
1	0.40	0.57	-0.01	0.31	0.48	-0.01	0.23
1.1	0.03	0.38	0.36	0.29	-0.01	0.01	0.24
1.2	0.38		0.34	-0.01	0.08		0.25
1.3	0.35		0.33	0.28	-0.02		0.26
1.4	0.35		0.32	0.08			0.28
1.5	0.34		-0.03				0.00
1.6	0.29						0.26
1.7	0.03						0.17
1.8							0.02
1.9							
2							
Average g	0.25	0.38	0.26	0.27	0.27	0.31	0.17

Appendix B

Road Relay Tests

The truck from Canada Safeway was instrumented with a fifth wheel to determine the accuracy of the Road Relay system.

The Road Relay results of the first panic stop showed a speed of 39 miles per hour immediately preceding braking action. The figure for the second panic stop was 37 miles per hour. It was not possible to match the results during braking, only the figure immediately preceding braking action was accurate. This is likely due either to the fact that the truck's wheels are experiencing braking where the fifth wheel is free wheeling, or that the speed change is too rapid for the sampling system of the Road Relay.

The next two pages show the results from the fifth wheel as they pertain to the panic stop tests. The speeds match exactly to the speed obtained from the Road Relay.

File Name	TR BR16	CSV								
Description										
Test Time a			1/21/95							
Sampling S					-					
Sampling F			Tomany							
Sample Tin	ne hefore T	noner 1	n seconds							
Sample Tin	ne after Tri	war 12 f	eeconds							
Encoder Po			Seconds							
Elicodel Pi	Dort A ME	A 6th Mho	al Diamete	er : -0.658 n	notore /200	M PPP\				
Acceleration	n Average	A Acmee 16	Time Slice	e0.036 i	neters (200	OO FFR)				
Acceleration	HI Average	ACIUSS IC	THITE SILVE							
Time	Wheel A	Distance	Velocity	Acceleration	n .	Average A	cceleration	during brak	ina	
			(m/s)	(g)	711	(a)	Coeletation	duling bran	iiig	
		-17. 6 27		(g)		-0.3789			-	
		-17.0737				-0.3109	Km/h	MPH		
		-17.0737						39.58522		
				-				39.58522	-	
		-15.9644						39.52634		
		-15.4095						39.57429 39.46724		
	8352357							39.46/24		
-0.8125		-14.3034								
		-13.7519						39.54106		
	8336302			-0.019				39.50404		
		-12.6448		-0.01				39.40457		
-0.6875				-0.009				39.47103		
-0.6563		-11.5387		0				39.44137		
-0.625	8314932							39.47839		
-0.5938		-10.4323						39.43401		
-0.5625		-9.88062		0.016				39.35662		
-0.5313	8298913							39.44873		
	8293552			0.002				39.50404		
-0.4688		-8.22234						39.40814		
-0.4375		-7.67071						39.58901		
-0.4063		-7.11289						39.5705		
-0.375		-6.56178						39.65168	<u> </u>	
	8266729							39.74758		
-0.3125		-5.44788		-0.11				39.01339		
		-4.90836						39.05041		
	8250789							39.39342		
	8245478							39.07606		
	8240198							38.86575		
-0.1563	8234944						62.22878			
-0.125								38.55597		
-0.0938								39.06134		
-0.0625	8219154							39.0687		
-0.0313	8213905			-0.046				38.62979		
0				-0.027				38.71454		
0.0313	8203412						62.77014	38.91749		
0.0625	8198136			-0.063			62. 81187			· · · · · · · · · · · · · · · · · · ·
0. 0938	8192857			-0.086			62. 50252			
0. 125	0187633	2. 17661	17. 2549	0. 113			62. 06799	38. 48215		
								L		

The results for the first test of the Road Relay. The full second prior to braking is shown, as well as the braking point. The Speed registered prior to braking by the Road Relay was 39 mph.

File Name	TR_BR17	.CSV					
Description	Truck bra	king tests					
Test Time	and Data	12:30:12 1	1/21/95				
Sampling S	equence C	ompleted N	lormally				
Sampling F							
Sample Tim	ne before Tr	igger: 1.0	seconds ;				
Sample hi							
Encoder Po							
F	ort A MEA	Sth Wheel	- Diamete	r:-0.658 meters	(20000 PPR)		
Acceleration	Average	Across 16	Time Slice	es			
	l l						
				Acceleration	/Average Acceleration	during braking	
(sec) (puls	es) I (r	n)			(g)		
-1		-16.7225	16.8347		-0.33514		
		-16.1958					
	74597141		16.6494				
	7454692		16.7156		luc :		
-0.875		-14.6297	16.7664		Km/H _i	MPH	
	7444544		16.7139				
	7439507		16.6411				
-0.7813		-13.0659	16.5832		59 . 6518	36.98412	
-0.75		-12.5487	16.5601	0.02	29.3 56871	36.9326	
		-12.0309	16.6345	0.049		37.09853	
-0.6875	7419428		16.6295	0.04		37.08737	
-0.6563		-10.9915	16.704			37.25353	
-0.625	7409331		17.0183			37.95448	
-0.5938		-9.92787	16.9753	0.004		37.85858	
-0.5625		-9.40406	16.8347			37.54501	
-0.5313	7393960	-8.8757	16.6659			37 16855	
-0.5		-8.36244	16.6329			37.09496	
-0.4688	7383906		16.699	-0.03 1		37.24237	
-0.4375		-7.31875	16.7007			37.24617	
-0.4063		-6.79236	16.7321/		60. II 8/4 1	37.31619	
-0.375		-6.27299		0.019		37.29032	
-0.3438		-5.74732	16.79	-0.004		37.44532	
-0.3125	7358639	-5.22362	16.7354	-0.006		37.32355	
-0.2813	7353588	-4.70136	16.6527	0.011		37.13912	
-0.25		-4.18282	16.6527	0.005		37.13912	
-0.2188	7343522		16.7784	0.012		37.41945	
-0.1875	7338431	-3.13417	16.747	-0.003		37.34942	
-0.1563	7333399		16.6676	0.015		37.17235	
-0.125	7328356	-2.09245	16.7123	0.01		37.27204	
-0.0938	7323297	-1.56936	16.7321	0.018		37.31619	
-0.0625	7318242	-1.04669	16.7834	0.03		37.4306	
-0.0313	7313152	-0.5204	16.747	0.02		37.34942	
0	7308119	0	16.6891	0.036		37.22029	
0.0313	7303064	0.52267	16.7784	0.032		37.41945	
	7297977	1.04865	16.8215	0.014		37.51558	
0.0938	7292896 7287863	1.57401 2.09441	16.7321	0.005		37.31619	
0.125			16.7272	0.018	60 46070	37.30527	

The results for the second test of the Road Relay. The full second prior to braking is shown, as well as the braking point. The Speed registered prior to braking by the Road Relay was 37 mph.