Canadian Policing Research Catalogue

E-mail analysis for investigators : techniques and implementation / Adam Szporer.

This page has been archived on the Web

Information identified as archived is provided for reference, research or recordkeeping purposes. It is not subject to the Government of Canada Web Standards and has not been altered or updated since it was archived. Please contact us to request a format other than those available.

Location

Canadian Policing Research

Resource

e-Books

Authors

Publishers

Bibliography

Includes bibliographical references.

Description

1 online resource (xi, 103 pages)

Note

M.A. Sc. Concordia University 2012.

Summary

E-mail is a common form of communication in regular use today. As such, it is a normal part of investigating a person or a crime. At present, there are many tools to perform bulk analysis and basic searching, but our research advances the state of the art by applying text mining and unsupervised learning techniques to automate the e-mail analysis process. Our key goals are to group similar e-mails together and to identify the concepts (subjects of discussion) of those e-mail groups. We present several new methods to increase the grouping accuracy: e-mail domain analysis and word pair analysis. We also present a technique for concept analysis. These goals are achieved by integrating our research with the capabilities of Weka, an open-source machine learning suite, and WordNet, a lexical database of the English language. We apply this research to the publicly available Enron e-mail dataset. We verify the results by examining the comparative advantage of each new technique.

Subject

Online Access

Date modified: